当前位置:   article > 正文

Orthogonality and Projection_什么是orthocomplement of subspace

什么是orthocomplement of subspace

Orthogonality of the four subspaces

在这里插入图片描述

  • The row space is perpendicular to the nullspace
  • The column space is perpendicular to the nullspace of A T A^T AT

  • The column space C(A) , a subspace of R m R^m Rm, dimention r
  • The leftnull space N( A T A^T AT) , a subspace of R m R^m Rm ,dimention m-r
  • The row space C( A T A^T AT) , a subspace of R n R^n Rn ,dimention r
  • The null space N(A) , a subspace of R n R^n Rn ,dimention n-r

Definition of orthogonal subspace

  • Two subspace V V V and W W W of a vector space are orthogonal if every vector v v v in V V V is perpendicular to every vector w w w in W W W

  • Every vector x in the nullspace is perpendicular to every row of A A A, because A x = 0 Ax=0 Ax=0 ,the nullspace N ( A ) N(A) N(A) and row space C ( A T ) C(A^T)
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/代码探险家/article/detail/833922
推荐阅读
相关标签
  

闽ICP备14008679号