赞
踩
绝对路径与相对路径差别
- from torchvision import transforms
- from PIL import Image
-
-
- img_path ="dataset/train/bees/16838648_415acd9e3f.jpg"
- img = Image.open(img_path)
- tensor_trans = transforms.ToTensor()
- tensor_img =tensor_trans(img)
- print(tensor_img)
transforms.ToTensor() 的写法 transforms表示模块 ToTensor 表示函数
from torchvision import transforms
from
: 指明我们要从某个包或模块中导入。torchvision
: 这是一个包(package),是 PyTorch 生态系统中专门用于计算机视觉任务的库。import
: 指明我们要导入什么。transforms
: 这是 torchvision
包中的一个模块,专门用于图像转换和数据增强Transforms 的使用(二)
- from torchvision import transforms
- from PIL import Image
- from torch.utils.tensorboard import SummaryWriter
-
-
- img_path ="dataset/train/bees/16838648_415acd9e3f.jpg"
- img = Image.open(img_path)
-
- writer = SummaryWriter("logs")
-
- tensor_trans = transforms.ToTensor()
- tensor_img =tensor_trans(img)
- writer.add_image("Tensor_img",tensor_img)
- writer.close()
- print(tensor_img[0][0][0])
- trans_norm = transforms.Normalize([0.5,0.5,0.5],[0.5,0.5,0.5])
- img_norm = trans_norm(tensor_img)
- print(img_norm[0][0][0])
- writer.close()
通道独立处理:
在图像处理和深度学习中,通常会对每个颜色通道独立进行标准化。这意味着每个通道都有自己的均值和标准差。
三维均值和标准差:
其中,mean_R 和 std_R 分别是红色通道的均值和标准差,以此类推。
def forward(self, tensor: Tensor) -> Tensor: return F.normalize(tensor, self.mean, self.std, self.inplace)
这里的 F.normalize
是 PyTorch 的函数式接口中的一个函数,它封装了标准化的具体实现。虽然我们在这个类的定义中没有看到具体的计算过程,但是这个标准化公式是 F.normalize
函数内部实现的核心逻辑。
PyTorch 的文档和源码中会详细说明 F.normalize
函数的具体实现。标准化公式 output[channel] = (input[channel] - mean[channel]) / std[channel]
是在 F.normalize
函数内部执行的。
- print(img.size)
- trans_resize = transforms.Resize((512,512))
- img_resize = trans_resize(img)
- img_resize = tensor_trans(img_resize)
- writer.add_image("Resize",img_resize,0)
- print(img_resize)
Compose 将两个函数功能结合
- trans_resize_2 = transforms.Resize(512)
- trans_compose = transforms.Compose([trans_resize_2,tensor_trans])
- img_resize2 = trans_compose(img)
- writer.add_image("Resize2",img_resize2,1)
- writer.close()
- trans_Randomcrop = transforms.RandomCrop(256)
- trans_compose2 = transforms.Compose([trans_Randomcrop,tensor_trans])
- for i in range(10):
- img_crop = trans_compose2(img)
- writer.add_image("Randomcrop",img_crop,i)
- writer.close()
- from torchvision import transforms
- from PIL import Image
- from torch.utils.tensorboard import SummaryWriter
-
-
- img_path ="dataset/train/bees/16838648_415acd9e3f.jpg"
- img = Image.open(img_path)
-
- writer = SummaryWriter("logs")
-
- tensor_trans = transforms.ToTensor()
- tensor_img =tensor_trans(img)
- writer.add_image("Tensor_img",tensor_img)
- #print(tensor_img)
- #Normalize 归一化
- print(tensor_img[0][0][0])
- trans_norm = transforms.Normalize([0.5,0.5,0.5],[0.5,0.5,0.5])
- img_norm = trans_norm(tensor_img)
- print(img_norm[0][0][0])
- writer.add_image("Normalize",img_norm)
- writer.close()
-
- ##Resize
- print(img.size)
- trans_resize = transforms.Resize((512,512))
- img_resize = trans_resize(img)
- img_resize = tensor_trans(img_resize)
- writer.add_image("Resize",img_resize,0)
- print(img_resize)
-
- #Compose
- trans_resize_2 = transforms.Resize(64)
- trans_compose = transforms.Compose([trans_resize_2,tensor_trans])
- img_resize2 = trans_compose(img)
- writer.add_image("Resize2",img_resize2,1)
- writer.close()
- #RandomCrop
- trans_Randomcrop = transforms.RandomCrop(256)
- trans_compose2 = transforms.Compose([trans_Randomcrop,tensor_trans])
- for i in range(10):
- img_crop = trans_compose2(img)
- writer.add_image("Randomcrop",img_crop,i)
- writer.close()

Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。