当前位置:   article > 正文

Windows 电脑部署 ollama3 并安装模型_olma3

olma3

Windows 电脑部署 ollama3 并安装模型

部署中为了尽可能减少对本地环境的污染,使用 Docker 安装!

github: https://github.com/ollama/ollama

准备部署文件

version: '3.8'

services:
   ollama:
     volumes:
       - ./models:/root/.ollama  # 将本地文件夹挂载到容器中的 /root/.ollama 目录 (模型下载位置)
     container_name: ollama
     pull_policy: always
     tty: true
     restart: unless-stopped
     image: ollama/ollama:latest
     ports:
       - 11434:11434  # Ollama API 端口

   open-webui:
     build:
       context: .
       args:
         OLLAMA_BASE_URL: '/ollama'
       dockerfile: Dockerfile
     image: ghcr.io/open-webui/open-webui:main
     container_name: open-webui
     volumes:
       - ./open-webui:/app/backend/data  # 前端页面数据挂载位置
     depends_on:
       - ollama
     ports:
       - ${OPEN_WEBUI_PORT-3005}:8080
     environment:
       - 'OLLAMA_BASE_URL=http://ollama:11434'
       - 'WEBUI_SECRET_KEY='
     extra_hosts:
       - host.docker.internal:host-gateway
     restart: unless-stopped
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34

之后使用 docker compose up -d 等待一段时间之后,docker images pull 成功。即可执行下一步。

下载 LLM 模型

LLM 模型参考:

ModelParametersSizeDownload
Llama 38B4.7GBollama run llama3
qwen4b2.3Gollama run qwen:4b
Llama 370B40GBollama run llama3:70b
Phi-33,8B2.3GBollama run phi3
Mistral7B4.1GBollama run mistral
Neural Chat7B4.1GBollama run neural-chat
Starling7B4.1GBollama run starling-lm
Code Llama7B3.8GBollama run codellama
Llama 2 Uncensored7B3.8GBollama run llama2-uncensored
LLaVA7B4.5GBollama run llava
Gemma2B1.4GBollama run gemma:2b
Gemma7B4.8GBollama run gemma:7b
Solar10.7B6.1GBollama run solar

这里选择最小体积且最好用的模型: llama3:4b 模型,qwen:4b 模型质量很差。

ollama3 run llama3
  • 1

成功之后会看到下面这样:

root@c5e5ff20a533:/# ollama run llama3
pulling manifest 
pulling 6a0746a1ec1a... 100% ▕██████████████████████████████████████████████████████████████████████████████████████████████████████████▏ 4.7 GB                         
pulling 4fa551d4f938... 100% ▕██████████████████████████████████████████████████████████████████████████████████████████████████████████▏  12 KB                         
pulling 8ab4849b038c... 100% ▕██████████████████████████████████████████████████████████████████████████████████████████████████████████▏  254 B                         
pulling 577073ffcc6c... 100% ▕██████████████████████████████████████████████████████████████████████████████████████████████████████████▏  110 B                         
pulling 3f8eb4da87fa... 100% ▕██████████████████████████████████████████████████████████████████████████████████████████████████████████▏  485 B                         
verifying sha256 digest 
writing manifest 
removing any unused layers 
success 
>>> 你好
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/代码探险家/article/detail/907221
推荐阅读
相关标签