赞
踩
构造器
===
使用ArrayBlockingQueue的时候,必须指定一个capacity阻塞队列的容量。可以传入可选的fair值,以采取不同公平性策略,默认使用非公平的策略。另外,可以传入集合对象,直接构造阻塞队列。
// 必须指定容量, 默认采用非公平策略
public ArrayBlockingQueue(int capacity) {
this(capacity, false);
}
// 另外,可指定公平性策略
public ArrayBlockingQueue(int capacity, boolean fair) {
// 对容量进行简单校验
if (capacity <= 0)
throw new IllegalArgumentException();
this.items = new Object[capacity]; // 初始化底层数组
lock = new ReentrantLock(fair); // 初始化lock
notEmpty = lock.newCondition(); // 初始化条件变量notEmpty
notFull = lock.newCondition(); // 初始化条件变量notFull
}
// 另外,可指定传入集合直接构造
public ArrayBlockingQueue(int capacity, boolean fair,
Collection<? extends E> c) {
this(capacity, fair);
// 加锁只是为了可见性, 而不是为了互斥特性
final ReentrantLock lock = this.lock;
lock.lock(); // Lock only for visibility, not mutual exclusion
try {
int i = 0;
try {
for (E e : c) { // 遍历赋值
checkNotNull(e);
items[i++] = e;
}
} catch (ArrayIndexOutOfBoundsException ex) {
throw new IllegalArgumentException();
}
count = i;
putIndex = (i == capacity) ? 0 : i;
} finally {
lock.unlock();
}
}
出队和入队操作
=======
队列的操作最核心的部分莫过于入队和出队了,后面分析的方法基本上都基于这两个工具方法。
入队enqueue
=========
private void enqueue(E x) {
// assert lock.getHoldCount() == 1;
// assert items[putIndex] == null;
final Object[] items = this.items;
// 把元素x放入数组
items[putIndex] = x;
// 下一个元素应该存放的下标位置
if (++putIndex == items.length)
putIndex = 0;
count++;
// 激活notEmpty的条件队列因调用take操作而被阻塞的一个线程
notEmpty.signal();
}
将元素x置入数组中。
计算下一个元素应该存放的下标位置。
元素个数器递增,这里count前加了锁,值都是从主内存中获取,不会存在内存不可见问题,并且更新也会直接刷新回主内存中。
最后激活notEmpty的条件队列因调用take操作而被阻塞的一个线程。
出队dequeue
=========
private E dequeue() {
// assert lock.getHoldCount() == 1;
// assert items[takeIndex] != null;
final Object[] items = this.items;
@SuppressWarnings(“unchecked”)
// 获取元素
E x = (E) items[takeIndex];
// 置null
items[takeIndex] = null;
// 重新设置对头下标
if (++takeIndex == items.length)
takeIndex = 0;
// 更新元素计数器
count–;
// 更新迭代器中的元素数据,itrs只用在使用迭代器的时候才实例化哦
if (itrs != null)
itrs.elementDequeued();
// 激活notFull的条件队列因调用put操作而被阻塞的一个线程
notFull.signal();
return x;
}
获取元素,并将当前位置置null。
重新设置队头下标。
元素计数器递减。
更新迭代器中的元素数据,itrs默认情况下都是为null的,只有使用迭代器的时候才会实例化Itrs。
激活notFull的条件队列因调用put操作而被阻塞的一个线程。
阻塞式操作
=====
E take() 阻塞式获取
==============
take操作将会获取当前队列头部元素并移除,如果队列为空则阻塞当前线程直到队列不为空,退出阻塞时返回获取的元素。
那,线程阻塞至何时如何知道呢,其实当前线程将会因notEmpty.await()被包装成等待节点置入notEmpty的条件队列中,一旦enqueue操作成功触发,也就是入队成功,将会执行notEmpty.signal()唤醒条件队列中等待的线程,被转移到AQS队列中参与锁的争夺。
如果线程在阻塞时被其他线程设置了中断标志,则抛出InterruptedException异常并返回。
public E take() throws InterruptedException {
final ReentrantLock lock = this.lock;
// 可响应中断式地获取锁
lock.lockInterruptibly();
try {
// 如果队列为空,则将当前线程包装为等待节点置入notEmpty的条件队列中
while (count == 0)
notEmpty.await();
// 非空,则执行入队操作,入队时唤醒notFull的条件队列中的第一个线程
return dequeue();
} finally {
lock.unlock();
}
}
void put(E e) 阻塞式插入
===================
put操作将向队尾插入元素,如果队列未满则插入,如果队列已满,则阻塞当前线程直到队列不满。
如果线程在阻塞时被其他线程设置了中断标志,则抛出InterruptedException异常并返回。
public void put(E e) throws InterruptedException {
checkNotNull(e);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
// 如果队列满,则将当前线程包装为等待节点置入notFull的条件队列中
while (count == items.length)
notFull.await();
// 非满,则执行入队操作,入队时唤醒notEmpty的条件队列中的第一个线程
enqueue(e);
} finally {
lock.unlock();
}
}
E poll(timeout, unit) 阻塞式超时获取
=============================
在take阻塞式获取方法的基础上额外增加超时功能,传入一个timeout,获取不到而阻塞的时候,如果时间到了,即使还获取不到,也只能立即返回null。
public E poll(long timeout, TimeUnit unit) throws InterruptedException {
long nanos = unit.toNanos(timeout);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
while (count == 0) {
// 队列仍为空,但是时间到了,必须返回了
if (nanos <= 0)
return null;
// 在条件队列里等着,但是需要更新时间
nanos = notEmpty.awaitNanos(nanos);
}
return dequeue();
} finally {
lock.unlock();
}
}
boolean offer(e, timeout, unit) 阻塞式超时插入
=======================================
在put阻塞式插入方法的基础上额外增加超时功能,传入一个timeout,获取不到而阻塞的时候,如果时间到了,即使还获取不到,也只能立即返回null。
public boolean offer(E e, long timeout, TimeUnit unit)
throws InterruptedException {
checkNotNull(e);
long nanos = unit.toNanos(timeout);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
while (count == items.length) {
if (nanos <= 0)
return false;
nanos = notFull.awaitNanos(nanos);
}
enqueue(e);
return true;
} finally {
lock.unlock();
}
}
其他常规操作
======
boolean offer(E e)
==================
offer(E e)是非阻塞的方法,向队尾插入一个元素,如果队列未满,则插入成功并返回true;如果队列已满则丢弃当前元素,并返回false。
public boolean offer(E e) {
checkNotNull(e); // 如果插入元素为null,则抛出NullPointerException异常
// 获取独占锁
final ReentrantLock lock = this.lock;
lock.lock();
try {
// 如果队列满, 则返回false
if (count == items.length)
return false;
else {
// 否则则入队
enqueue(e);
return true;
}
} finally {
lock.unlock();
}
}
E poll()
========
从队列头部获取并移除第一个元素,如果队列为空则返回null。
public E poll() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
// 如果为空,返回null, 否则执行出队操作
return (count == 0) ? null : dequeue();
} finally {
lock.unlock();
}
}
Boolean remove(Object o)
========================
移除队列中与元素o相等【指的是equals方法判定相同】的元素,移除成功返回true,如果队列为空或没有匹配元素,则返回false。
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数Java工程师,想要提升技能,往往是自己摸索成长,自己不成体系的自学效果低效漫长且无助。
因此收集整理了一份《2024年Java开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Java开发知识点,不论你是刚入门Android开发的新手,还是希望在技术上不断提升的资深开发者,这些资料都将为你打开新的学习之门!
如果你觉得这些内容对你有帮助,需要这份全套学习资料的朋友可以戳我获取!!
由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!
。**
深知大多数Java工程师,想要提升技能,往往是自己摸索成长,自己不成体系的自学效果低效漫长且无助。
因此收集整理了一份《2024年Java开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
[外链图片转存中…(img-Y76ycbO9-1715431411488)]
[外链图片转存中…(img-rFPXNW12-1715431411489)]
[外链图片转存中…(img-Vi3zdwWU-1715431411489)]
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Java开发知识点,不论你是刚入门Android开发的新手,还是希望在技术上不断提升的资深开发者,这些资料都将为你打开新的学习之门!
如果你觉得这些内容对你有帮助,需要这份全套学习资料的朋友可以戳我获取!!
由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。