赞
踩
张勇,男,西安工程大学电子信息学院,2022级研究生
研究方向:智能信息处理与信息系统研究
电子邮件:17605542959@163.com
陈梦丹,女,西安工程大学电子信息学院,2022级硕士研究生,张宏伟人工智能课题组
研究方向:机器视觉与人工智能
电子邮件:1169738496@qq.com
K-Means聚类算法即K均值算法,是一种迭代求解的聚类分析算法,是一个将数据集中在某些方面相似的数据成员进行分类组织的过程。给定一个数据点集合和需要的聚类数目K,K由用户指定,K均值算法根据某个距离函数反复把数据分入K个聚类中。
K均值算法优势在于它速度很快,原理简单、易于操作,但是也有缺点:(1)必须选择有多少个组或类;(2)不同的算法运行中可能产生不同的聚类结果,结果不可重复,缺乏一致性;(3)常常终止于局部最优;(4)对噪声和异常数据敏感及不适合用于发现非凸形状的聚类簇。
K-Means的核心目标是将给定的数据集划分成K个簇(K是超参),并给出每个样本数据对应的中心点。具体步骤非常简单,可以分为4步:
Iris鸢尾花数据集: 包含 3 类分别为山鸢尾(Iris-setosa)、变色鸢尾(Iris-versicolor)和维吉尼亚鸢尾(Iris-virginica),共 150 条数据,每类各 50 个数据,每条记录都有 4 项特征:花萼长度、花萼宽度、花瓣长度、花瓣宽度,通常可以通过这4个特征预测鸢尾花卉属于哪一品种。
Iris数据集是一个.csv文件,其数据格式如下:
图中第一行数据的意义是:150(数据集中数据的总条数);4(特征值的类别数),即花萼长度、花萼宽度、花瓣长度、花瓣宽度;setosa、versicolor、virginica:三种鸢尾花名。
从第二行开始各列数据的意义:第一列为花萼长度值;第二列为花萼宽度值;第三列为花瓣长度值;第四列为花瓣宽度值;第五列对应是种类(三类鸢尾花分别用0,1,2表示)。
1、首先要在自己的Python环境中下载sklearn(进入个人虚拟环境并输入):
pip install scikit-learn -i https://pypi.tuna.tsinghua.edu.cn/simple
2、下载数据集:
from sklearn.cluster import KMeans
from sklearn import datasets
from sklearn.datasets import load_iris
iris = load_iris()
当K分别等于2、3、4时,具体实现代码如下:
K=2:
import matplotlib.pyplot as plt import numpy as np from sklearn.cluster import KMeans from sklearn import datasets from sklearn.datasets import load_iris iris = load_iris() X = iris.data[:] estimator = KMeans(n_clusters=2) #构造聚类器,这里聚成两类 estimator.fit(X) #聚类 label_pred = estimator.labels_ #获取聚类标签 #绘图 x0 = X[label_pred == 0] x1 = X[label_pred == 1] plt.scatter(x0[:, 0], x0[:, 1], c = "red", marker='o', label='label0') plt.scatter(x1[:, 0], x1[:, 1], c = "green", marker='*', label='label1') plt.xlabel('petal length') plt.ylabel('petal width') plt.legend(loc=2) plt.show()
K=3:
import matplotlib.pyplot as plt import numpy as np from sklearn.cluster import KMeans from sklearn import datasets from sklearn.datasets import load_iris iris = load_iris() X = iris.data[:] estimator = KMeans(n_clusters=3) #构造聚类器,这里聚成两类 estimator.fit(X) #聚类 label_pred = estimator.labels_ #获取聚类标签 #绘图 x0 = X[label_pred == 0] x1 = X[label_pred == 1] x2 = X[label_pred == 2] plt.scatter(x0[:, 0], x0[:, 1], c = "red", marker='o', label='label0') plt.scatter(x1[:, 0], x1[:, 1], c = "green", marker='*', label='label1') plt.scatter(x2[:, 0], x2[:, 1], c = "blue", marker='+', label='label2') plt.xlabel('petal length') plt.ylabel('petal width') plt.legend(loc=2) plt.show()
K=4:
import matplotlib.pyplot as plt import numpy as np from sklearn.cluster import KMeans from sklearn import datasets from sklearn.datasets import load_iris iris = load_iris() X = iris.data[:] estimator = KMeans(n_clusters=4) #构造聚类器,这里聚成两类 estimator.fit(X) #聚类 label_pred = estimator.labels_ #获取聚类标签 #绘图 x0 = X[label_pred == 0] x1 = X[label_pred == 1] x2 = X[label_pred == 2] x3 = X[label_pred == 3] plt.scatter(x0[:, 0], x0[:, 1], c = "red", marker='o', label='label0') plt.scatter(x1[:, 0], x1[:, 1], c = "green", marker='*', label='label1') plt.scatter(x2[:, 0], x2[:, 1], c = "blue", marker='+', label='label2') plt.scatter(x3[:, 0], x3[:, 1], c = "orange", marker='+', label='label3') plt.xlabel('petal length') plt.ylabel('petal width') plt.legend(loc=2) plt.show()
在构建聚类器时,修改K值,即修改需要分成几类(簇),单单修改参数cluster=2、3、4是不正确的,在绘图程序部分也要与之对应进行修改。
例如:cluster=4,绘图程序仍然用cluster=3的绘图程序,虽然程序不会报错,但是导致分类只有三类,实验结果错误。下面是错误代码及结果演示:
import matplotlib.pyplot as plt import numpy as np from sklearn.cluster import KMeans from sklearn import datasets from sklearn.datasets import load_iris iris = load_iris() X = iris.data[:] estimator = KMeans(n_clusters=4) #构造聚类器,这里聚成两类 estimator.fit(X) #聚类 label_pred = estimator.labels_ #获取聚类标签 #绘图 x0 = X[label_pred == 0] x1 = X[label_pred == 1] x2 = X[label_pred == 2] plt.scatter(x0[:, 0], x0[:, 1], c = "red", marker='o', label='label0') plt.scatter(x1[:, 0], x1[:, 1], c = "green", marker='*', label='label1') plt.scatter(x2[:, 0], x2[:, 1], c = "blue", marker='+', label='label2') plt.xlabel('petal length') plt.ylabel('petal width') plt.legend(loc=2) plt.show()
错误代码实验结果展示:
https://zhuanlan.zhihu.com/p/184686598?utm_source=qq
https://blog.csdn.net/u010916338/article/details/86487890
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。