赞
踩
- #绘制激活函数代码
- import numpy as np
- import matplotlib.pyplot as plt
-
- # 定义激活函数
-
- def logistic(x):
- return 1 / (1 + np.exp(-x))
-
- def tanh(x):
- return np.tanh(x)
-
- def relu(x):
- return np.maximum(0, x)
-
- def leaky_relu(x, alpha=0.01):
- return np.where(x >= 0, x, alpha * x)
-
- def elu(x, alpha=1.0):
- return np.where(x >= 0, x, alpha * (np.exp(x) - 1))
-
- # 绘制激活函数图像
-
- x = np.linspace(-10, 10, 1000)
-
- # Logistic
- plt.figure(figsize=(6, 4))
- plt.plot(x, logistic(x), label='Logistic')
- plt.plot(x, tanh(x), label='Tanh')
- #plt.title('Logistic Activation Function')
- plt.title('Logistic & Tanh')
- plt.xlabel('x')
- plt.ylabel('f(x)')
- plt.legend()
- plt.grid(True)
- plt.show()
-
- # Tanh
- plt.figure(figsize=(6, 4))
- plt.plot(x, tanh(x), label='Tanh')
- plt.title('Tanh Activation Function')
- plt.xlabel('x')
- plt.ylabel('f(x)')
- plt.legend()
- plt.grid(True)
- plt.show()
-
- # ReLU
- plt.figure(figsize=(6, 4))
- plt.plot(x, relu(x), label='ReLU')
- plt.title('ReLU Activation Function')
- plt.xlabel('x')
- plt.ylabel('f(x)')
- plt.legend()
- plt.grid(True)
- plt.show()
-
- # Leaky ReLU
- plt.figure(figsize=(6, 4))
- plt.plot(x, leaky_relu(x), label='Leaky ReLU')
- plt.title('Leaky ReLU Activation Function')
- plt.xlabel('x')
- plt.ylabel('f(x)')
- plt.legend()
- plt.grid(True)
- plt.show()
-
- # ELU
- plt.figure(figsize=(6, 4))
- plt.plot(x, elu(x), label='ELU')
- plt.title('ELU Activation Function')
- plt.xlabel('x')
- plt.ylabel('f(x)')
- plt.legend()
- plt.grid(True)
- plt.show()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。