当前位置:   article > 正文

yolov5——train.py代码【注释、详解、使用教程】

train.py

yolov5——train.py代码【注释、详解、使用教程】


前言

最近在用yolov5参加比赛,yolov5的技巧很多,仅仅用来参加比赛,着实有点浪费,所以有必要好好学习一番,在认真学习之前,首先向yolov5的作者致敬,对了我是用的版本是v6。每每看到这些大神的作品,实在是有点惭愧,要学的太多了。
在这里插入图片描述

1. parse_opt函数

def parse_opt(known=False):
    """
    argparse 使用方法:
    parse = argparse.ArgumentParser()
    parse.add_argument('--s', type=int, default=2, help='flag_int')
    """
    parser = argparse.ArgumentParser()
    # weights 权重的路径./weights/yolov5s.pt.... 
    # yolov5提供4个不同深度不同宽度的预训练权重 用户可以根据自己的需求选择下载
    parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='initial weights path')
    # cfg 配置文件(网络结构) anchor/backbone/numclasses/head,训练自己的数据集需要自己生成
    # 生成方式——例如我的yolov5s_mchar.yaml 根据自己的需求选择复制./models/下面.yaml文件,5个文件的区别在于模型的深度和宽度依次递增
    parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
    # data 数据集配置文件(路径) train/val/label/, 该文件需要自己生成
    # 生成方式——例如我的/data/mchar.yaml 训练集和验证集的路径 + 类别数 + 类别名称
    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
    # hpy超参数设置文件(lr/sgd/mixup)./data/hyps/下面有5个超参数设置文件,每个文件的超参数初始值有细微区别,用户可以根据自己的需求选择其中一个
    parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path')
    # epochs 训练轮次, 默认轮次为300次
    parser.add_argument('--epochs', type=int, default=300)
    # batchsize 训练批次, 默认bs=16
    parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
    # imagesize 设置图片大小, 默认640*640
    parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
    # rect 是否采用矩形训练,默认为False
    parser.add_argument('--rect', action='store_true', help='rectangular training')
    # resume 是否接着上次的训练结果,继续训练
    parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
    # nosave 不保存模型  默认False(保存)  在./runs/exp*/train/weights/保存两个模型 一个是最后一次的模型 一个是最好的模型
    # best.pt/ last.pt 不建议运行代码添加 --nosave 
    parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
    # noval 最后进行测试, 设置了之后就是训练结束都测试一下, 不设置每轮都计算mAP, 建议不设置
    parser.add_argument('--noval', action='store_true', help='only validate final epoch')
    # noautoanchor 不自动调整anchor, 默认False, 自动调整anchor
    parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')
    # evolve参数进化, 遗传算法调参
    parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
    # bucket谷歌优盘 / 一般用不到
    parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
    # cache 是否提前缓存图片到内存,以加快训练速度,默认False
    parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"')
    # mage-weights 使用图片采样策略,默认不使用
    parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
    # device 设备选择
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    # multi-scale 多测度训练
    parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
    # single-cls 数据集是否多类/默认True
    parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
    # optimizer 优化器选择 / 提供了三种优化器
    parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer')
    # sync-bn:是否使用跨卡同步BN,在DDP模式使用
    parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
    # workers/dataloader的最大worker数量
    parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
    # 保存路径 / 默认保存路径 ./runs/ train
    parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name')
    # 实验名称
    parser.add_argument('--name', default='exp', help='save to project/name')
    # 项目位置是否存在 / 默认是都不存在
    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
    parser.add_argument('--quad', action='store_true', help='quad dataloader')
    # cos-lr 余弦学习率
    parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')
    # 标签平滑 / 默认不增强, 用户可以根据自己标签的实际情况设置这个参数,建议设置小一点 0.1 / 0.05
    parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
    # 早停止忍耐次数 / 100次不更新就停止训练
    parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
    # --freeze冻结训练 可以设置 default = [0] 数据量大的情况下,建议不设置这个参数
    parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
    # --save-period 多少个epoch保存一下checkpoint
    parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
    # --local_rank 进程编号 / 多卡使用
    parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')

    # Weights & Biases arguments
    # 在线可视化工具,类似于tensorboard工具,想了解这款工具可以查看https://zhuanlan.zhihu.com/p/266337608
    parser.add_argument('--entity', default=None, help='W&B: Entity')
    # upload_dataset: 是否上传dataset到wandb tabel(将数据集作为交互式 dsviz表 在浏览器中查看、查询、筛选和分析数据集) 默认False
    parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='W&B: Upload data, "val" option')
    # bbox_interval: 设置界框图像记录间隔 Set bounding-box image logging interval for W&B 默认-1   opt.epochs // 10
    parser.add_argument('--bbox_interval', type=int, default=-1, help='W&B: Set bounding-box image logging interval')
    # 使用数据的版本
    parser.add_argument('--artifact_alias', type=str, default='latest', help='W&B: Version of dataset artifact to use')

    # 传入的基本配置中没有的参数也不会报错# parse_args()和parse_known_args() 
    # parse = argparse.ArgumentParser()
    # parse.add_argument('--s', type=int, default=2, help='flag_int')
    # parser.parse_args() / parse_args()
    opt = parser.parse_known_args()[0] if known else parser.parse_args()
    return opt

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92

2. main函数

2.1 main函数——打印关键词/安装环境

def main(opt, callbacks=Callbacks()):
    ############################################### 1. Checks ##################################################
    if RANK in [-1, 0]:
        # 输出所有训练参数 / 参数以彩色的方式表现
        print_args(FILE.stem, opt)
        # 检查代码版本是否更新
        check_git_status()
        # 检查安装是否都安装了 requirements.txt, 缺少安装包安装。
        # 缺少安装包:建议使用 pip install -i https://pypi.tuna.tsinghua.edu.cn/simple -r requirements.txt
        check_requirements(exclude=['thop'])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

2.2 main函数——是否进行断点训练

############################################### 2. Resume ##################################################
    # 初始化可视化工具wandb,wandb使用教程看https://zhuanlan.zhihu.com/p/266337608
    # 断点训练使用教程可以查看:https://blog.csdn.net/CharmsLUO/article/details/123410081
    if opt.resume and not check_wandb_resume(opt) and not opt.evolve:  # resume an interrupted run
        # isinstance()是否是已经知道的类型
        # 如果resume是True,则通过get_lastest_run()函数找到runs为文件夹中最近的权重文件last.pt
        ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run()  # specified or most recent path
        # 判断是否是文件
        assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
        #  # 相关的opt参数也要替换成last.pt中的opt参数 safe_load()yaml文件加载数据
        with open(Path(ckpt).parent.parent / 'opt.yaml', errors='ignore') as f:
            # argparse.Namespace 可以理解为字典
            opt = argparse.Namespace(**yaml.safe_load(f))  # replace
        opt.cfg, opt.weights, opt.resume = '', ckpt, True  # reinstate
        # 打印断点训练信息
        LOGGER.info(f'Resuming training from {ckpt}')
    else:
        # 不使用断点训练就在加载输入的参数
        opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \
            check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project)  # checks
        assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
        # opt.evolve=False,opt.name='exp'    opt.evolve=True,opt.name='evolve'
        if opt.evolve:
            if opt.project == str(ROOT / 'runs/train'):  # if default project name, rename to runs/evolve
                opt.project = str(ROOT / 'runs/evolve')
            opt.exist_ok, opt.resume = opt.resume, False  # pass resume to exist_ok and disable resume
        # 保存相关信息
        opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

2.3 main函数——是否分布式训练

# ############################################## 3.DDP mode ###############################################
    # 选择设备cpu/cuda
    device = select_device(opt.device, batch_size=opt.batch_size)
    # 多卡训练GPU
    if LOCAL_RANK != -1:
        msg = 'is not compatible with YOLOv5 Multi-GPU DDP training'
        assert not opt.image_weights, f'--image-weights {msg}'
        assert not opt.evolve, f'--evolve {msg}'
        assert opt.batch_size != -1, f'AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size'
        assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE'
        assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
        # 根据编号选择设备
        #使用torch.cuda.set_device()可以更方便地将模型和数据加载到对应GPU上, 直接定义模型之前加入一行代码即可
        # torch.cuda.set_device(gpu_id) #单卡
        # torch.cuda.set_device('cuda:'+str(gpu_ids)) #可指定多卡
        torch.cuda.set_device(LOCAL_RANK)
        device = torch.device('cuda', LOCAL_RANK)
        # 初始化多进程
        dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

2.4 main函数——是否进化训练/遗传算法调参

################################################ 4. Train #################################################
    # 不设置evolve直接调用train训练
    if not opt.evolve:
        train(opt.hyp, opt, device, callbacks)
        # 分布式训练 WORLD_SIZE=主机的数量
        # 如果是使用多卡训练, 那么销毁进程组
        if WORLD_SIZE > 1 and RANK == 0:
            LOGGER.info('Destroying process group... ')
            # 使用多卡训练, 那么销毁进程组
            dist.destroy_process_group()

    # Evolve hyperparameters (optional)
    # 遗传净化算法/一边训练一遍进化
    # 了解遗传算法可以查看我的博客:
    else:
        # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
        # 超参数列表(突变范围 - 最小值 - 最大值)
        meta = {'lr0': (1, 1e-5, 1e-1),  # initial learning rate (SGD=1E-2, Adam=1E-3)
                'lrf': (1, 0.01, 1.0),  # final OneCycleLR learning rate (lr0 * lrf)
                'momentum': (0.3, 0.6, 0.98),  # SGD momentum/Adam beta1
                'weight_decay': (1, 0.0, 0.001),  # optimizer weight decay
                'warmup_epochs': (1, 0.0, 5.0),  # warmup epochs (fractions ok)
                'warmup_momentum': (1, 0.0, 0.95),  # warmup initial momentum
                'warmup_bias_lr': (1, 0.0, 0.2),  # warmup initial bias lr
                'box': (1, 0.02, 0.2),  # box loss gain
                'cls': (1, 0.2, 4.0),  # cls loss gain
                'cls_pw': (1, 0.5, 2.0),  # cls BCELoss positive_weight
                'obj': (1, 0.2, 4.0),  # obj loss gain (scale with pixels)
                'obj_pw': (1, 0.5, 2.0),  # obj BCELoss positive_weight
                'iou_t': (0, 0.1, 0.7),  # IoU training threshold
                'anchor_t': (1, 2.0, 8.0),  # anchor-multiple threshold
                'anchors': (2, 2.0, 10.0),  # anchors per output grid (0 to ignore)
                'fl_gamma': (0, 0.0, 2.0),  # focal loss gamma (efficientDet default gamma=1.5)
                'hsv_h': (1, 0.0, 0.1),  # image HSV-Hue augmentation (fraction)
                'hsv_s': (1, 0.0, 0.9),  # image HSV-Saturation augmentation (fraction)
                'hsv_v': (1, 0.0, 0.9),  # image HSV-Value augmentation (fraction)
                'degrees': (1, 0.0, 45.0),  # image rotation (+/- deg)
                'translate': (1, 0.0, 0.9),  # image translation (+/- fraction)
                'scale': (1, 0.0, 0.9),  # image scale (+/- gain)
                'shear': (1, 0.0, 10.0),  # image shear (+/- deg)
                'perspective': (0, 0.0, 0.001),  # image perspective (+/- fraction), range 0-0.001
                'flipud': (1, 0.0, 1.0),  # image flip up-down (probability)
                'fliplr': (0, 0.0, 1.0),  # image flip left-right (probability)
                'mosaic': (1, 0.0, 1.0),  # image mixup (probability)
                'mixup': (1, 0.0, 1.0),  # image mixup (probability)
                'copy_paste': (1, 0.0, 1.0)}  # segment copy-paste (probability)

        with open(opt.hyp, errors='ignore') as f:
            # 加载yaml超参数
            hyp = yaml.safe_load(f)  # load hyps dict
            if 'anchors' not in hyp:  # anchors commented in hyp.yaml
                hyp['anchors'] = 3
        opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir)  # only val/save final epoch
        # ei = [isinstance(x, (int, float)) for x in hyp.values()]  # evolvable indices
        # 保存进化的超参数列表
        evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv'
        if opt.bucket:
            os.system(f'gsutil cp gs://{opt.bucket}/evolve.csv {evolve_csv}')  # download evolve.csv if exists
        """
        遗传算法调参:遵循适者生存、优胜劣汰的法则,即寻优过程中保留有用的,去除无用的。
        遗传算法需要提前设置4个参数: 群体大小/进化代数/交叉概率/变异概率

        """

        # 默认选择进化300代
        for _ in range(opt.evolve):  # generations to evolve
            if evolve_csv.exists():  # if evolve.csv exists: select best hyps and mutate
                # Select parent(s)
                # 进化方式--single / --weight
                parent = 'single'  # parent selection method: 'single' or 'weighted'
                # 加载evolve.txt文件
                x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1)
                # 选取进化结果代数
                n = min(5, len(x))  # number of previous results to consider
                x = x[np.argsort(-fitness(x))][:n]  # top n mutations
                 # 根据resluts计算hyp权重
                w = fitness(x) - fitness(x).min() + 1E-6  # weights (sum > 0)
                # 根据不同进化方式获得base hyp
                if parent == 'single' or len(x) == 1:
                    # x = x[random.randint(0, n - 1)]  # random selection
                    x = x[random.choices(range(n), weights=w)[0]]  # weighted selection
                elif parent == 'weighted':
                    x = (x * w.reshape(n, 1)).sum(0) / w.sum()  # weighted combination

                # Mutate
                # # 获取突变初始值
                mp, s = 0.8, 0.2  # mutation probability, sigma
                npr = np.random
                npr.seed(int(time.time()))
                g = np.array([meta[k][0] for k in hyp.keys()])  # gains 0-1
                ng = len(meta)
                v = np.ones(ng)
                # 设置突变
                while all(v == 1):  # mutate until a change occurs (prevent duplicates)
                    # 将突变添加到base hyp上
                    # [i+7]是因为x中前7个数字为results的指标(P,R,mAP,F1,test_loss=(box,obj,cls)),之后才是超参数hyp
                    v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
                for i, k in enumerate(hyp.keys()):  # plt.hist(v.ravel(), 300)
                    hyp[k] = float(x[i + 7] * v[i])  # mutate

            # Constrain to limits
            # 限制超参再规定范围
            for k, v in meta.items():
                hyp[k] = max(hyp[k], v[1])  # lower limit
                hyp[k] = min(hyp[k], v[2])  # upper limit
                hyp[k] = round(hyp[k], 5)  # significant digits

            # Train mutation
            # 训练 使用突变后的参超 测试其效果
            results = train(hyp.copy(), opt, device, callbacks)
            callbacks = Callbacks()
            # Write mutation results
            # Write mutation results
            # 将结果写入results 并将对应的hyp写到evolve.txt evolve.txt中每一行为一次进化的结果
            # 每行前七个数字 (P, R, mAP, F1, test_losses(GIOU, obj, cls)) 之后为hyp
            # 保存hyp到yaml文件
            print_mutation(results, hyp.copy(), save_dir, opt.bucket)

        # Plot results
        # 将结果可视化 / 输出保存信息
        plot_evolve(evolve_csv)
        LOGGER.info(f'Hyperparameter evolution finished {opt.evolve} generations\n'
                    f"Results saved to {colorstr('bold', save_dir)}\n"
                    f'Usage example: $ python train.py --hyp {evolve_yaml}')
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124

3. train函数

3.1 train函数——基本配置信息

################################################ 1. 传入参数/基本配置 #############################################
    # opt传入的参数
    save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = \
        Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
        opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze

    # Directories
    w = save_dir / 'weights'  # weights dir
    # 新建文件夹 weights train evolve
    (w.parent if evolve else w).mkdir(parents=True, exist_ok=True)  # make dir
    # 保存训练结果的目录  如runs/train/exp*/weights/last.pt
    last, best = w / 'last.pt', w / 'best.pt'

    # Hyperparameters # isinstance()是否是已知类型
    if isinstance(hyp, str):
        with open(hyp, errors='ignore') as f:
            # 加载yaml文件
            hyp = yaml.safe_load(f)  # load hyps dict
    # 打印超参数 彩色字体
    LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))

    # Save run settings
    # 如果不使用进化训练
    if not evolve:
        # safe_dump() python值转化为yaml序列化
        with open(save_dir / 'hyp.yaml', 'w') as f:
            yaml.safe_dump(hyp, f, sort_keys=False)
        with open(save_dir / 'opt.yaml', 'w') as f:
            # vars(opt) 的作用是把数据类型是Namespace的数据转换为字典的形式。
            yaml.safe_dump(vars(opt), f, sort_keys=False)

    # Loggers
    data_dict = None
    if RANK in [-1, 0]:
        loggers = Loggers(save_dir, weights, opt, hyp, LOGGER)  # loggers instance
        if loggers.wandb:
            data_dict = loggers.wandb.data_dict
            if resume:
                weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size

        # Register actions
        for k in methods(loggers):
            callbacks.register_action(k, callback=getattr(loggers, k))

    # Config 画图
    plots = not evolve  # create plots
    # GPU / CPU
    cuda = device.type != 'cpu'
    # 随机种子
    init_seeds(1 + RANK)
    # 存在子进程-分布式训练
    with torch_distributed_zero_first(LOCAL_RANK):
        data_dict = data_dict or check_dataset(data)  # check if None
    # 训练集和验证集的位路径
    train_path, val_path = data_dict['train'], data_dict['val']
    # 设置类别 是否单类
    nc = 1 if single_cls else int(data_dict['nc'])  # number of classes
    # 类别对应的名称
    names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names']  # class names
    # 判断类别长度和文件是否对应
    assert len(names) == nc, f'{len(names)} names found for nc={nc} dataset in {data}'  # check
    # 当前数据集是否是coco数据集(80个类别) 
    is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt')  # COCO dataset
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63

3.2 train函数——模型加载/断点训练

################################################### 2. Model ###########################################
    # 检查文件后缀是否是.pt
    check_suffix(weights, '.pt')  # check weights
    # 加载预训练权重 yolov5提供了5个不同的预训练权重,大家可以根据自己的模型选择预训练权重
    pretrained = weights.endswith('.pt')
    if pretrained:
        # # torch_distributed_zero_first(RANK): 用于同步不同进程对数据读取的上下文管理器
        with torch_distributed_zero_first(LOCAL_RANK):
            # 如果本地不存在就从网站上下载
            weights = attempt_download(weights)  # download if not found locally
        # 加载模型以及参数
        ckpt = torch.load(weights, map_location='cpu')  # load checkpoint to CPU to avoid CUDA memory leak
        """
        两种加载模型的方式: opt.cfg / ckpt['model'].yaml
        使用resume-断点训练: 选择ckpt['model']yaml创建模型, 且不加载anchor
        使用断点训练时,保存的模型会保存anchor,所以不需要加载

        """
        model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create
        exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else []  # exclude keys
        csd = ckpt['model'].float().state_dict()  # checkpoint state_dict as FP32
        # 筛选字典中的键值对  把exclude删除
        csd = intersect_dicts(csd, model.state_dict(), exclude=exclude)  # intersect
        model.load_state_dict(csd, strict=False)  # load
        LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}')  # report
    else:
        # 不适用预训练权重
        model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

3.3 train函数——冻结训练/冻结层设置

################################################ 3. Freeze/冻结训练 #########################################
    # 冻结训练的网络层
    freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))]  # layers to freeze
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            LOGGER.info(f'freezing {k}')
            # 冻结训练的层梯度不更新
            v.requires_grad = False
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

3.4 train函数——图片大小/batchsize设置

# Image size
    gs = max(int(model.stride.max()), 32)  # grid size (max stride)
    # 检查图片的大小
    imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2)  # verify imgsz is gs-multiple

    # Batch size
    if RANK == -1 and batch_size == -1:  # single-GPU only, estimate best batch size
        batch_size = check_train_batch_size(model, imgsz)
        loggers.on_params_update({"batch_size": batch_size})
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

3.5 train函数——优化器选择 / 分组优化设置

############################################ 4. Optimizer/优化器 ###########################################
    """
    nbs = 64
    batchsize = 16
    accumulate = 64 / 16 = 4
    模型梯度累计accumulate次之后就更新一次模型 相当于使用更大batch_size
    """
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / batch_size), 1)  # accumulate loss before optimizing
    # 权重衰减参数
    hyp['weight_decay'] *= batch_size * accumulate / nbs  # scale weight_decay
    # 打印日志
    LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}")

    # 将模型参数分为三组(weights、biases、bn)来进行分组优化
    g0, g1, g2 = [], [], []  # optimizer parameter groups
    for v in model.modules():
        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):  # bias
            g2.append(v.bias)
        if isinstance(v, nn.BatchNorm2d):  # weight (no decay)
            g0.append(v.weight)
        elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):  # weight (with decay)
            g1.append(v.weight)
    # 选择优化器 / 提供了三个优化器——g0
    if opt.optimizer == 'Adam':
        optimizer = Adam(g0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999))  # adjust beta1 to momentum
    elif opt.optimizer == 'AdamW':
        optimizer = AdamW(g0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999))  # adjust beta1 to momentum
    else:
        optimizer = SGD(g0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
    # 设置优化的方式——g1 / g2
    optimizer.add_param_group({'params': g1, 'weight_decay': hyp['weight_decay']})  # add g1 with weight_decay
    optimizer.add_param_group({'params': g2})  # add g2 (biases)
    # 打印log日志 优化信息
    LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__} with parameter groups "
                f"{len(g0)} weight (no decay), {len(g1)} weight, {len(g2)} bias")
    # 删除变量
    del g0, g1, g2
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38

3.6 train函数——学习率/ema/归一化/单机多卡

############################################ 5. Scheduler ##############################################
    # 是否余弦学习率调整方式
    if opt.cos_lr:
        lf = one_cycle(1, hyp['lrf'], epochs)  # cosine 1->hyp['lrf']
    else:
        lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf']  # linear
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)  # plot_lr_scheduler(optimizer, scheduler, epochs)

    # EMA
    # 使用EMA(指数移动平均)对模型的参数做平均, 一种给予近期数据更高权重的平均方法, 以求提高测试指标并增加模型鲁棒。
    ema = ModelEMA(model) if RANK in [-1, 0] else None

    # Resume
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # EMA
        if ema and ckpt.get('ema'):
            ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
            ema.updates = ckpt['updates']

        # Epochs
        start_epoch = ckpt['epoch'] + 1
        if resume:
            assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, nothing to resume.'
        if epochs < start_epoch:
            LOGGER.info(f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs.")
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt, csd

    # DP mode
    # DP: 单机多卡模式
    if cuda and RANK == -1 and torch.cuda.device_count() > 1:
        LOGGER.warning('WARNING: DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n'
                       'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.')
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm 多卡归一化
    if opt.sync_bn and cuda and RANK != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        # 打印信息
        LOGGER.info('Using SyncBatchNorm()')

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48

3.7 train函数——数据加载 / anchor调整

# ############################################## 6. Trainloader / 数据加载 ######################################
    # 训练集数据加载
    train_loader, dataset = create_dataloader(train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls,
                                              hyp=hyp, augment=True, cache=None if opt.cache == 'val' else opt.cache,
                                              rect=opt.rect, rank=LOCAL_RANK, workers=workers,
                                              image_weights=opt.image_weights, quad=opt.quad,
                                              prefix=colorstr('train: '), shuffle=True)
    # 标签编号最大值
    mlc = int(np.concatenate(dataset.labels, 0)[:, 0].max())  # max label class
    # 类别总数
    nb = len(train_loader)  # number of batches
    # 判断编号是否正确
    assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'

    # Process 0
    # 验证集数据集加载
    if RANK in [-1, 0]:
        val_loader = create_dataloader(val_path, imgsz, batch_size // WORLD_SIZE * 2, gs, single_cls,
                                       hyp=hyp, cache=None if noval else opt.cache,
                                       rect=True, rank=-1, workers=workers * 2, pad=0.5,
                                       prefix=colorstr('val: '))[0]
        # 没有使用断点训练
        if not resume:
            labels = np.concatenate(dataset.labels, 0)
            # c = torch.tensor(labels[:, 0])  # classes
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
            if plots:
                # 画出标签信息
                plot_labels(labels, names, save_dir)

            # Anchors
            # 自适应anchor / anchor可以理解为程序预测的box
            # 根据k-mean算法聚类生成新的锚框
            if not opt.noautoanchor:
                # 参数dataset代表的是训练集,hyp['anchor_t']是从配置文件hpy.scratch.yaml读取的超参数 anchor_t:4.0
                # 当配置文件中的anchor计算bpr(best possible recall)小于0.98时才会重新计算anchor。
                # best possible recall最大值1,如果bpr小于0.98,程序会根据数据集的label自动学习anchor的尺寸
                check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
            # 半进度
            model.half().float()  # pre-reduce anchor precision
        callbacks.run('on_pretrain_routine_end')
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42

3.8 train函数——训练配置/多尺度训练/热身训练

# #################################################### 7. 训练 ###############################################
    # DDP mode
    # DDP:多机多卡
    if cuda and RANK != -1:
        model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)

    # Model attributes
    nl = de_parallel(model).model[-1].nl  # number of detection layers (to scale hyps)
    hyp['box'] *= 3 / nl  # scale to layers
    hyp['cls'] *= nc / 80 * 3 / nl  # scale to classes and layers
    hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl  # scale to image size and layers
    # 标签平滑
    hyp['label_smoothing'] = opt.label_smoothing
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    # 从训练样本标签得到类别权重(和类别中的目标数即类别频率成反比)
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc  # attach class weights
    model.names = names

    # Start training
    t0 = time.time()
    # # 获取热身迭代的次数iterations: 3
    nw = max(round(hyp['warmup_epochs'] * nb), 100)  # number of warmup iterations, max(3 epochs, 100 iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    last_opt_step = -1
    # # 初始化maps(每个类别的map)和results
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0)  # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
    # 设置学习率衰减所进行到的轮次,即使打断训练,使用resume接着训练也能正常衔接之前的训练进行学习率衰减
    scheduler.last_epoch = start_epoch - 1  # do not move
    # 设置amp混合精度训练
    scaler = amp.GradScaler(enabled=cuda)
    # 早停止,不更新结束训练
    stopper = EarlyStopping(patience=opt.patience)
    # 初始化损失函数
    compute_loss = ComputeLoss(model)  # init loss class
    # 打印信息
    LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
                f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
                f"Logging results to {colorstr('bold', save_dir)}\n"
                f'Starting training for {epochs} epochs...')
    # 开始走起训练
    for epoch in range(start_epoch, epochs):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional, single-GPU only)
        # opt.image_weights
        if opt.image_weights:
            """
            如果设置进行图片采样策略,
            则根据前面初始化的图片采样权重model.class_weights以及maps配合每张图片包含的类别数
            通过random.choices生成图片索引indices从而进行采样
            """
            cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc  # class weights
            iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw)  # image weights
            dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n)  # rand weighted idx

        # Update mosaic border (optional)
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(3, device=device)  # mean losses
        if RANK != -1:
            train_loader.sampler.set_epoch(epoch)
        pbar = enumerate(train_loader)
        LOGGER.info(('\n' + '%10s' * 7) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels', 'img_size'))
        if RANK in [-1, 0]:
            # 进度条显示
            pbar = tqdm(pbar, total=nb, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}')  # progress bar
        # 梯度清零
        optimizer.zero_grad()
        for i, (imgs, targets, paths, _) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float() / 255  # uint8 to float32, 0-255 to 0.0-1.0

            """
            热身训练(前nw次迭代)
            在前nw次迭代中, 根据以下方式选取accumulate和学习率
            """
            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    """
                    bias的学习率从0.1下降到基准学习率lr*lf(epoch),
                    其他的参数学习率从0增加到lr*lf(epoch).
                    lf为上面设置的余弦退火的衰减函数
                    动量momentum也从0.9慢慢变到hyp['momentum'](default=0.937)
                    """

                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                """
                Multi-scale  设置多尺度训练,从imgsz * 0.5, imgsz * 1.5 + gs随机选取尺寸
                """
                sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]  # new shape (stretched to gs-multiple)
                    imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)

            # Forward / 前向传播
            with amp.autocast(enabled=cuda):
                pred = model(imgs)  # forward
                # # 计算损失,包括分类损失,objectness损失,框的回归损失
                # loss为总损失值,loss_items为一个元组,包含分类损失,objectness损失,框的回归损失和总损失
                loss, loss_items = compute_loss(pred, targets.to(device))  # loss scaled by batch_size
                if RANK != -1:
                    # 平均不同gpu之间的梯度
                    loss *= WORLD_SIZE  # gradient averaged between devices in DDP mode
                if opt.quad:
                    loss *= 4.

            # Backward
            scaler.scale(loss).backward()

            # Optimize  # 模型反向传播accumulate次之后再根据累积的梯度更新一次参数
            if ni - last_opt_step >= accumulate:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)
                last_opt_step = ni

            # Log
            if RANK in [-1, 0]:
                mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
                mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G'  # (GB)
                pbar.set_description(('%10s' * 2 + '%10.4g' * 5) % (
                    f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
                callbacks.run('on_train_batch_end', ni, model, imgs, targets, paths, plots, opt.sync_bn)
                if callbacks.stop_training:
                    return
            # end batch ------------------------------------------------------------------------------------------------

        # Scheduler 进行学习率衰减
        lr = [x['lr'] for x in optimizer.param_groups]  # for loggers
        scheduler.step()

        if RANK in [-1, 0]:
            # mAP
            callbacks.run('on_train_epoch_end', epoch=epoch)
            # 将model中的属性赋值给ema
            ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
            # 判断当前的epoch是否是最后一轮
            final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
            # notest: 是否只测试最后一轮  True: 只测试最后一轮   False: 每轮训练完都测试mAP
            if not noval or final_epoch:  # Calculate mAP
                """
                测试使用的是ema(指数移动平均 对模型的参数做平均)的模型
                results: [1] Precision 所有类别的平均precision(最大f1时)
                         [1] Recall 所有类别的平均recall
                         [1] map@0.5 所有类别的平均mAP@0.5
                         [1] map@0.5:0.95 所有类别的平均mAP@0.5:0.95
                         [1] box_loss 验证集回归损失, obj_loss 验证集置信度损失, cls_loss 验证集分类损失
                maps: [80] 所有类别的mAP@0.5:0.95
                """
                results, maps, _ = val.run(data_dict,
                                           batch_size=batch_size // WORLD_SIZE * 2,
                                           imgsz=imgsz,
                                           model=ema.ema,
                                           single_cls=single_cls,
                                           dataloader=val_loader,
                                           save_dir=save_dir,
                                           plots=False,
                                           callbacks=callbacks,
                                           compute_loss=compute_loss)

            # Update best mAP
            # Update best mAP 这里的best mAP其实是[P, R, mAP@.5, mAP@.5-.95]的一个加权值
            # fi: [P, R, mAP@.5, mAP@.5-.95]的一个加权值 = 0.1*mAP@.5 + 0.9*mAP@.5-.95
            fi = fitness(np.array(results).reshape(1, -1))  # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
            if fi > best_fitness:
                best_fitness = fi
            log_vals = list(mloss) + list(results) + lr
            callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)

            # Save model
            """
            保存带checkpoint的模型用于inference或resuming training
            保存模型, 还保存了epoch, results, optimizer等信息
            optimizer将不会在最后一轮完成后保存
            model保存的是EMA的模型
            """
            if (not nosave) or (final_epoch and not evolve):  # if save
                ckpt = {'epoch': epoch,
                        'best_fitness': best_fitness,
                        'model': deepcopy(de_parallel(model)).half(),
                        'ema': deepcopy(ema.ema).half(),
                        'updates': ema.updates,
                        'optimizer': optimizer.state_dict(),
                        'wandb_id': loggers.wandb.wandb_run.id if loggers.wandb else None,
                        'date': datetime.now().isoformat()}

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                if (epoch > 0) and (opt.save_period > 0) and (epoch % opt.save_period == 0):
                    torch.save(ckpt, w / f'epoch{epoch}.pt')
                del ckpt
                callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)

            # Stop Single-GPU
            if RANK == -1 and stopper(epoch=epoch, fitness=fi):
                break

            # Stop DDP TODO: known issues shttps://github.com/ultralytics/yolov5/pull/4576
            # stop = stopper(epoch=epoch, fitness=fi)
            # if RANK == 0:
            #    dist.broadcast_object_list([stop], 0)  # broadcast 'stop' to all ranks

        # Stop DPP
        # with torch_distributed_zero_first(RANK):
        # if stop:
        #    break  # must break all DDP ranks
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224

3.9 train函数——训练结束/打印信息/保存结果

############################################### 8. 打印训练信息 ##########################################
    if RANK in [-1, 0]:
        LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
        for f in last, best:
            if f.exists():
                # 模型训练完后, strip_optimizer函数将optimizer从ckpt中删除
                # 并对模型进行model.half() 将Float32->Float16 这样可以减少模型大小, 提高inference速度
                strip_optimizer(f)  # strip optimizers
                if f is best:
                    LOGGER.info(f'\nValidating {f}...')
                    results, _, _ = val.run(data_dict,
                                            batch_size=batch_size // WORLD_SIZE * 2,
                                            imgsz=imgsz,
                                            model=attempt_load(f, device).half(),
                                            iou_thres=0.65 if is_coco else 0.60,  # best pycocotools results at 0.65
                                            single_cls=single_cls,
                                            dataloader=val_loader,
                                            save_dir=save_dir,
                                            save_json=is_coco,
                                            verbose=True,
                                            plots=True,
                                            callbacks=callbacks,
                                            compute_loss=compute_loss)  # val best model with plots
                    if is_coco:
                        callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi)
        # 回调函数
        callbacks.run('on_train_end', last, best, plots, epoch, results)
        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
    # 释放显存
    torch.cuda.empty_cache()
    return results

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32

4. run函数

def run(**kwargs):
    # 执行这个脚本/ 调用train函数 / 开启训练
    # Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt')
    opt = parse_opt(True)
    for k, v in kwargs.items():
        # setattr() 赋值属性,属性不存在则创建一个赋值
        setattr(opt, k, v)
    main(opt)
    return opt
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

5.全部代码注释

# YOLOv5 
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/你好赵伟/article/detail/167699
推荐阅读
相关标签