当前位置:   article > 正文

常用损失函数(L1、L2、SSIM和MS-SSIM)对比简介_mse损失函数改为ssim

mse损失函数改为ssim

1.介绍

    本文的介绍主要是参考论文:Loss Functions for Image Restoration with Neural Networks,而作者是从这三个实验(image super-resolution, JPEG artifactsremoval, and joint denoising plus demosaicking)上来证明这几个损失函数的好坏。

2.损失函数

    L1损失函数: 基于逐像素比较差异,然后取绝对值

    L2损失函数: 基于逐像素比较差异,然后取平方

    相对于L1损失函数,L2损失函数会放大最大误差和最小误差之间的差距(比如2*2 和0.1*0.1),另外L2损失函数对异常点也比较敏感。如果我们在训练网络的时候,只用L1损失函数或者L2损失函数的时候,很容易陷入到局部最优解中,如果选择交替训练的话,说不定会取得不错的效果。

   在图像质量评价指标中,有一个指标是PSNR(Peak Signal-to-Noise Ratio) 峰值信噪比,它正好对标L1和L2损失函数,但L1和L2是有一个共性:它们都是基于逐像素比较差异,没有考虑人类视觉感知,更没有考虑人的审美观,所以PSNR指标高,并不一定代表图像质量就好。在下面公式中,如果图片中每个像素都由 8 位二进制来表示,那么MAX就为 255

   SSIM(结构相似)损失函数:考虑了亮度 (luminance)、对比度 (contrast) 和结构 (structure)指标,这就考虑了人类视觉感知,一般而言,SSIM得到的结果会比L1,L2的结果更有细节

   MS-SSIM(多尺度结构相似)损失函数:基于多层(图片按照一定规则,由大到小缩放)的SSIM损失函数,相当于考虑了分辨率

   MS-SSIM+L1损失函数:作者这样组合的原因是,MS-SSIM容易导致亮度的改变和颜色的偏差,但它能保留高频信息(图像的边缘和细节),而L1损失函数能较好的保持亮度和颜色不变化。公式中α为0.84,是作者试验出来的,而G为高斯分布参数(MS-SSIM里面也要用到这个)

3.效果对比

超分辨率:放大图片对比会发现L2中出现光栅失真现象,最好去原论文放大看看

JPEG去块:放大图片对比会发现L2中还是有比较严重的块状现象,最好去原论文放大看看

去噪+去马赛克:一眼看出,L2的效果明显差一些,就不用放大了

    我个人觉得评价一张图片的质量好不好,或者那个算法的效果好不好,应该结合主观和客观来评价,下图的客观数据也表明:MS-SSIM+L1损失函数是最好的

4.总结

     1.既然用了L2损失函数,为何不尝试一下L1损失函数

     2.如果不看PSNR指标,那就用MS-SSIM或者SSIM损失函数吧

     3.如果想获得奇效,试一下组合损失函数也为何不可

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/你好赵伟/article/detail/192983
推荐阅读
相关标签
  

闽ICP备14008679号