赞
踩
openai最近发布的gpt-3.5-turbo-0613
和 gpt-4-0613版本模型增加了function calling的功能,该功能通过定义功能函数,gpt通过分析问题和函数功能描述来决定是否调用函数,并且生成函数对应的入参。函数调用的功能可以弥补gpt的一些缺点,比如实时信息的缺乏、特定领域能力,使得能够进一步利用gpt的逻辑推理能力,可以将问题进行分解处理,解决问题能力更加强大。
gpt的函数调用功能步骤如下:
1.使用问句和函数定义调用gpt
2.gpt选择是否调用函数,并输出参数
3.解析参数 调用函数
4.将函数返回作为追加信息再次调用gpt
下面是一个通过调用search api的例子
1.定义+描述函数
下面代码介绍了一个搜索函数,可以通过GoogleSerperAPI实时搜索网络上的信息。
- ###定义functions,用于描述函数作用和参数介绍。
- functions = [
- {
- "name": "get_info_from_web",
- "description": "get more informations from internet use google search",
- "parameters": {
- "type": "object",
- "properties": {
- "query": {
- "type": "string",
- "description": "all the questions or information you want search from internet",
- }
- },
- "required": ["query"],
- },
- }
- ]
-
- ###函数定义
- def get_info_from_web(query):
- search = GoogleSerperAPIWrapper(serper_api_key="xxxxx")
- return search.run(query)
2.调用gpt,决定是否调用函数以及函数参数
当用户问句为"今天杭州天气怎么样?"时,gpt做出了进行调用get_info_from_web函数的决定,并且调用的参数为"query": "杭州天气"。
- messages = []
- messages.append({"role": "system", "content": "Don't make assumptions about what values to plug into functions. Ask for clarification if a user request is ambiguous. "})
- messages.append({"role": "user", "content": "今天杭州天气怎么样?"})
- chat_response = chat_completion_request(
- messages, functions=functions
- )
- assistant_message = chat_response.json()["choices"][0]["message"]
- messages.append(assistant_message)
- print(assistant_message)
-
- >>>
- {
- 'role': 'assistant',
- 'content': None,
- 'function_call': {
- 'name': 'get_info_from_web',
- 'arguments': '{\n "query": "杭州天气"\n}'
- }
- }
3.执行gpt的决定,获得回答问题的中间结果
调用第2步中gpt输出的参数执行相应的函数,获得中间结果。
- assistant_message = chat_response.json()["choices"][0]["message"]
- if assistant_message.get("function_call"):
- if assistant_message["function_call"]["name"] == "get_info_from_web":
- query = json.loads(assistant_message["function_call"]["arguments"])["query"]
- results = get_info_from_web(query)
- else:
- results = f"Error: function {assistant_message['function_call']['name']} does not exist"
- print(results)
-
- >>>
- 81°F
4.函数结果和原始问题再次询问gpt,获得最终结果
- messages.append({"role": "function", "name": assistant_message["function_call"]["name"], "content": results})
- second_response = openai.ChatCompletion.create(
- model= GPT_MODEL,
- messages=messages
- )
- print(second_response["choices"][0]["message"]["content"])
-
- >>>
- 今天杭州的天气是81°F。
在openai的function calling发布之前,LangChain的Agent就可以实现类似功能。Agent接口是LangChain中一个重要的模块,一些应用程序需要根据用户输入灵活地调用LLM和其他工具。Agent接口为此类应用程序提供了灵活性。Agent可以访问一套工具,并根据用户输入确定要使用哪些工具。Agent可以使用多个工具,并将一个工具的输出用作下一个工具的输入。
以下是search agent的例子。定义GoogleSerperApi工具作为LLM可用的tool,帮助解决相关问题。
- from langchain.utilities import GoogleSerperAPIWrapper
- from langchain.llms.openai import OpenAI
- from langchain.agents import initialize_agent, Tool
- from langchain.agents import AgentType
-
- llm = OpenAI(temperature=0)
- search = GoogleSerperAPIWrapper(serper_api_key="xxxxxx")
- tools = [
- Tool(
- name="Intermediate Answer",
- func=search.run,
- description="useful for when you need to ask with search",
- )
- ]
-
- self_ask_with_search = initialize_agent(
- tools, llm, agent=AgentType.SELF_ASK_WITH_SEARCH, verbose=True
- )
-
- self_ask_with_search.run(
- "今天杭州天气怎么样?"
- )
-
- >>>
- > Entering new AgentExecutor chain...
- Yes.
- Follow up: 今天是几号?
- Intermediate answer: Sunday, July 16, 2023
- Follow up: 杭州今天的天气情况?
- Intermediate answer: 88°F
- So the final answer is: 88°F
-
- > Finished chain.
- 88°F
agent功能通过设计prompt实现,search agent的prompt设计如下:
- """Question: Who lived longer, Muhammad Ali or Alan Turing?
- Are follow up questions needed here: Yes.
- Follow up: How old was Muhammad Ali when he died?
- Intermediate answer: Muhammad Ali was 74 years old when he died.
- Follow up: How old was Alan Turing when he died?
- Intermediate answer: Alan Turing was 41 years old when he died.
- So the final answer is: Muhammad Ali
- Question: When was the founder of craigslist born?
- Are follow up questions needed here: Yes.
- Follow up: Who was the founder of craigslist?
- Intermediate answer: Craigslist was founded by Craig Newmark.
- Follow up: When was Craig Newmark born?
- Intermediate answer: Craig Newmark was born on December 6, 1952.
- So the final answer is: December 6, 1952
- Question: Who was the maternal grandfather of George Washington?
- Are follow up questions needed here: Yes.
- Follow up: Who was the mother of George Washington?
- Intermediate answer: The mother of George Washington was Mary Ball Washington.
- Follow up: Who was the father of Mary Ball Washington?
- Intermediate answer: The father of Mary Ball Washington was Joseph Ball.
- So the final answer is: Joseph Ball
- Question: Are both the directors of Jaws and Casino Royale from the same country?
- Are follow up questions needed here: Yes.
- Follow up: Who is the director of Jaws?
- Intermediate answer: The director of Jaws is Steven Spielberg.
- Follow up: Where is Steven Spielberg from?
- Intermediate answer: The United States.
- Follow up: Who is the director of Casino Royale?
- Intermediate answer: The director of Casino Royale is Martin Campbell.
- Follow up: Where is Martin Campbell from?
- Intermediate answer: New Zealand.
- So the final answer is: No
- Question: {input}
- Are followup questions needed here:{agent_scratchpad}"""
可以从prompt看出,通过四个例子提出了解决问题的方式,即通过follow up + Intermediate answer 分解问题并解决子问题。follow up是gpt的输出,表示需要search tool搜索的问题, Intermediate answer 则为search tool的答案,循环多次之后得到最终答案。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。