赞
踩
本文旨在深入探讨性能优化的重要性,并提供一套全面的性能优化方案。我们将从硬件、软件和网络三个方面进行分析,以帮助您提高系统的整体性能。通过遵循这些建议,您将能够显著提高系统的响应速度、降低延迟,以及提升用户体验。
业务分层、系统分级、服务分布、数据库分库/表、动静分离、同步拆分成异步、单线程分解成多线程、原数据缓存分离、单表分多表、单库分多库、分流等等。。。。
在系统性能优化中,"分而治之"是一种常用的策略,通过将问题分解为更小、更可管理的子问题,然后分别解决每个子问题,最终得到整体的优化效果。以下是一些常见的"分而治之"技术和方法:
微服务粒度不可太细该合则合、数据库大表减少联合查询该冗余则合并冗余数据。直观的表述就是:从前端用的CDN、动静分离,到后台服务拆分成微服务、分布式、负载均衡、缓存、池化、多线程、IO、分库表、搜索引擎等等。都是强调一个“分”字。
在系统性能优化中,"合而为一"是一种策略,强调整体性能的最大化,而不仅仅是局部问题的解决。以下是一些常见的"合而为一"技术和方法:
通过采用以上的"合而为一"技术,可以在整体上提升系统性能,通过综合考虑各个组件和模块的相互关系和相互影响,达到全局性能的最大化。这种方法强调整体性能的提升,使系统在各个层面和维度上获得最佳的性能和效率。
随着科技的发展,高性能计算已经成为了许多行业的关键需求。无论是游戏、金融、医疗还是其他领域,高性能计算都扮演着举足轻重的角色。然而,实现高性能并非易事。为了满足用户对速度和效率的需求,我们需要不断地进行性能优化。在这篇文章中,我们将为您介绍一套全面的性能优化方案,帮助您提高系统的整体性能。
性能优化是指对计算机硬件、操作系统和应用程序有相当深入的了解,调节三者之间的关系,实现整个系统(包括硬件、操作系统、应用)的性能最大化,并能不断的满足现有的业务需求。通过对系统进行调整、改进和优化,以提高其执行速度、响应时间、吞吐量、资源利用率或其他性能指标的过程。性能优化旨在通过减少延迟、提高吞吐量、降低资源消耗等手段,使系统能够更高效地满足用户需求,提供更好的用户体验。
性能优化可以应用于各个领域,包括软件开发、数据库管理、网络通信、算法设计、系统架构等。
性能优化是一个持续的过程,需要综合考虑系统的需求、资源限制和用户体验,通过实时监测、分析和优化来不断改进系统的性能。它涉及到细致的性能分析、实验、调整和验证,以确保系统在实际运行中能够达到最佳的性能表现。
性能优化的目标是提高系统、应用程序或算法的性能,以满足用户需求,并提供更好的用户体验。以下是性能优化的主要目标:
性能优化的目标是使系统在给定的资源和约束条件下,尽可能地达到最佳的性能水平。综合考虑用户需求、系统要求和资源限制,以实现性能和可用性的最佳平衡。
性能优化在现代应用开发和系统设计中具有重要性,以下是性能优化的几个关键方面和其重要性:
性能优化不仅是满足用户期望的基本要求,还是保持竞争力、提高效率和节约资源的关键因素。通过投入适当的时间和资源进行性能优化,可以实现系统的卓越性能和用户体验,从而为个人用户、企业和组织带来巨大的利益。
性能优化需要遵循一些基本的原则:
1、硬件层面的性能优化
2、软件层面的性能优化
3、网络层面的性能优化
JMM(Java Memory Model)是Java虚拟机规范中定义的一种内存模型,它描述了Java程序如何在多线程环境下访问共享内存。JMM主要是为了屏蔽各种硬件和操作系统对内存访问的差异而定义出来的内存模型。JMM定义了一个抽象的计算机内存模型,包括主内存和工作内存两部分。
JVM运行时数据区是Java虚拟机在执行Java程序时所使用的内存区域。这些区域包括了以下几个部分:
以上就是Java虚拟机运行时数据区的主要组成部分。不同的区域在内存大小和使用方式上有所不同,但它们都是支撑Java程序正常执行的重要组成部分。理解Java虚拟机的运行时数据区,对于编写高效、稳定的Java程序非常重要。
Java的垃圾回收(Garbage Collection,GC)机制是Java虚拟机(JVM)负责自动回收不再使用的对象所占用的内存空间的一种机制。垃圾回收机制大大减轻了开发人员手动管理内存的负担,并帮助预防内存泄漏和提高应用程序的性能。
1、回收过程
1)先判断对象是否存活(是否是垃圾)
可以通过引用计数算法和可达性分析算法来判断,由于引用计数算法无法解决循环引用的问题,所以目前使用的都是可达性分析算法
2)再遍历并回收对象(回收垃圾)
可以通过垃圾收集器(Serial/Parallel/CMS/G1)来回收垃圾,垃圾收集器使用的算法标记清除算法、标记整理算法、复制回收算法和分代回收算法。
2、GC种类
3、GC原理
GC收集器核心是GC收集算法
GC收集算法一般先要判断对象是否存活就会用到引用计数算法或可达性分析算法
引用计数算法解决不了循环引用的情况,所以目前使用的都是可达性分析算法
GC分为4个种类,作用在内存的不同区域(新生代Eden/S0/S1、老年代)。这时GC收集器会相互组合完成不同种类的GC,从而达到JVM GC的功能
收集器 | CMS | G1 |
---|---|---|
回收算法 | 标记清除 | 标记整理 |
回收区域 | 老年代 | 新生代+老年代 |
内存布局 | 传统 | 将新生代、老年代切一起分成一个个Region |
内存碎片 | 产生碎片空间 | 碎片空间小 |
并发 | 并发 | 并发 |
JDK使用 | JDK8默认(Parallel) | JDK9默认 |
停顿时间 | 最短停顿时间 | 可预测停顿时间 |
Java虚拟机还提供了许多参数用于调整垃圾收集器的行为和性能。可以使用这些参数来指定特定的垃圾收集器,调整堆大小、停顿时间、吞吐量等。根据应用程序的需求和特性,可以通过这些参数来优化垃圾收集器的性能。
1)jstat:用于监控JVM内存使用情况和垃圾回收信息。
2)jmap:用于生成JVM堆转储文件,以便分析内存使用情况。
3)jconsole:用于监控JVM性能指标、线程数量等信息。
4)VisualVM:一个功能强大的性能分析工具,可以统计CPU、内存、GC等各种指标,并提供图形化界面。
5)阿里Arthas:应用程序的性能分析、内存泄漏检测、线程问题排查、方法调用追踪等操作。
6)Apache JMeter:用于进行压力测试和性能测试。可测试出系统的性能拐点。
7)Eclipse MAT:Mat是Eclipse的一个插件, 也可以独立运行, 所以即使你使用IDEA也可以独立使用Mat。MAT主要的功能就是分析dump文件。
8)XRebel:一款轻量级的Java性能分析工具,提供实时的代码级性能分析和优化建议。
页面操作后,会在xrebel控制台看到每个http请求的耗时
把每个被调用或执行的类的方法耗时都显示出来,同时不同颜色标明耗时情况。
corePoolSize核心线程数(正式工)
workQueue等待队列(合同工)
maximumPoolSize最大线程数(所有人员)
Oracle 官方并没有给出线程池 corePoolSize 的具体参考值,因为这个值的大小应该根据实际业务场景和系统资源情况来进行优化调整。不同的业务场景和系统资源状况可能需要不同的 corePoolSize 设置。
在《Java并发编程实战》一书中,作者 Brian Goetz 等人指出,线程池的规模应该根据任务类型和计算密集度来确定,对于 CPU 密集型任务,应该将核心线程数设置为处理器核心数加 1 或者 2;对于 I/O 密集型任务,可以适当增加核心线程数以利用空闲的 CPU 时间。
这个建议是基于以下考虑:对于 CPU 密集型任务,线程需要大量计算,因此需要足够多的 CPU 资源,而处理器核心数加 1 或者 2 的数量可以充分利用 CPU 资源,避免线程之间的竞争和阻塞;而对于 I/O 密集型任务,由于线程大部分时间都处于等待 I/O 操作的状态,因此可以适当增加核心线程数以利用空闲的 CPU 时间,从而提高系统效率。
虽然这个建议并非官方标准,但在实际应用中已经得到广泛的认可和应用,并取得了不错的效果。
性能优化中减少锁竞争和使用细粒度锁是常用的策略,可以有效提高并发程序的性能。以下是一些减少锁竞争和使用细粒度锁的策略:
通过分解大锁为多个小锁,减小锁的粒度,从而降低锁竞争的程度。例如,将一个大的同步代码块拆分成多个小的同步代码块,可以使并发执行的线程之间的竞争减少。
对于读多写少的场景,可以使用读写锁(ReentrantReadWriteLock)来提高并发性能。读写锁允许多个线程同时获取读锁,但只有一个线程可以获取写锁,从而提供更高的并发性。
Java提供了一些并发集合类,如ConcurrentHashMap、ConcurrentLinkedQueue等。这些并发集合类使用了内部的细粒度锁机制,可以在多线程环境下提供高效的并发操作。
CAS(Compare and Swap)是一种乐观锁机制,通过比较并交换的方式进行原子操作,避免了使用传统的互斥锁带来的性能开销和线程阻塞。Java中的Atomic类和AtomicReference类提供了CAS操作的支持。
具体来说,多线程CAS操作包括以下几个步骤:
在并发环境下,多线程CAS操作可以保证共享变量的原子性操作,同时也避免了传统锁机制所带来的线程阻塞和上下文切换的开销。因此,多线程CAS操作被广泛应用于各种高并发场景中,如数据库事务、分布式系统等。
将数据结构中的只读操作和写操作分离,分别使用读锁和写锁。这样可以允许多个线程同时读取数据,而只有在写操作时才需要加锁,减少了读操作之间的竞争。
无锁算法(Lock-Free)是一种不使用互斥锁的并发算法。它通常基于CAS操作和其他原子操作,通过无阻塞的方式实现并发访问,避免了锁竞争带来的性能损失。
合理评估同步代码块的范围,避免不必要的同步,减少锁竞争的范围,提高并发性能。
需要根据具体的应用场景和需求选择适合的策略。同时,性能优化是一个综合考虑的过程,还需综合其他因素,如资源利用、算法优化等,以获得最佳的性能提升效果。
代码优化是性能优化的基础,它可以通过减少代码中的冗余和重复操作来提高程序的执行效率。以下是一些常见的代码优化技巧:
选择合适的数据结构可以显著提高代码的性能。通过分析问题的特点,选择更高效的算法来解决问题,如使用快速排序替代冒泡排序等。
将重复计算的结果存储起来,避免在程序中多次计算相同的结果。例如,可以将一个数字的平方存储在一个变量中,然后在需要的时候直接使用这个变量。
合理管理内存资源可以减少内存分配和释放的开销,如避免频繁的对象创建和销毁,使用对象池、缓存等技术进行优化。
位运算比算术运算更快,因为它们可以直接操作二进制位。例如,可以使用按位与操作符(&)来检查一个整数是否为偶数。
函数调用会产生额外的开销,因此应该尽量减少函数调用的次数。例如,可以将一些常用的计算结果存储在全局变量中,然后在需要的时候直接使用这些变量。
关于代码优化可以选择一份编码规范或形成一定的代码库。官方下载地址:《Java开发手册(黄山版).pdf》
性能优化之stream技术是指使用Java 8中的Stream API来对集合进行高效的遍历和操作。Stream API可以提供一种声明式的编程风格,利用Lambda表达式对集合进行各种聚合操作和批量数据操作,例如排序、过滤、映射等。Stream API还可以支持并行处理,利用多核CPU的优势,提高数据的处理速度。
Stream API的实现原理主要涉及以下几个方面:
性能优化之reactive技术是指一种面向数据流和事件的异步编程范式,可以提高程序的响应速度和资源利用率。reactive技术可以分为reactive编程和reactive架构两个方面。
reactive编程是指使用一些库或框架,如RxJava、Reactor、Redux等,来实现数据流和事件的响应式处理,可以简化异步编程的复杂度,提高代码的可读性和可维护性。
reactive架构是指使用一些设计原则和模式,如响应式宣言、微服务、消息驱动等,来构建高可用、高伸缩、高弹性的分布式系统,可以应对不断变化的需求和负载。
1)SQL及索引优化:SQL查询语句的优化是提高MySQL性能的关键。优化查询语句可以采用各种方法,如使用合适的索引、避免在WHERE子句中使用函数操作符、减少子查询等。
2)表结构优化:表的设计和结构也会影响MySQL的性能。适当的表设计可以提高查询性能和数据处理速度。例如,使用分区表可以加速查询,而垂直拆分表可以降低数据库的负载。
3)系统配置优化:MySQL及服务器的参数设置对于性能也非常重要。调整配置可以让MySQL更好地利用硬件资源。例如,增加缓存区大小、调整连接超时时间或者优化排序缓存等都可以提高系统性能。
4)硬件优化:除了软件方面的优化,还可以通过硬件来优化MySQL性能。例如,使用更快的磁盘、增加内存以及升级CPU等都可以提高MySQL的负载能力。
缓存技术是性能优化中常用的一种策略,它通过存储计算结果、数据或资源的副本,以减少对原始数据源的访问次数,从而提高数据访问的速度和性能。
需要根据具体的应用场景和需求选择合适的缓存技术,并综合考虑缓存的一致性、容量、更新机制等因素。同时,缓存的设计和管理也需要谨慎,避免缓存膨胀、数据一致性问题和过期缓存的影响。
1)本地缓存:
将缓存数据存储在单个应用程序进程内部的内存中,通常是使用Java集合类如HashMap、ConcurrentHashMap等进行实现。本地缓存的优点是速度快、易于实现,并且不需要网络传输,但无法跨越多个应用程序进程共享数据。
2)分布式缓存:
将缓存数据存储在多台服务器上,通过网络传输数据实现缓存共享。常见的分布式缓存框架有Redis、Memcached、Ehcache等。分布式缓存的优点是可以扩展性好、支持高并发、容量大,并且能够提高应用程序的可靠性和可用性。
3)多级缓存(本地+分布式):
将缓存数据同时存储在本地缓存和分布式缓存中,以加快访问速度并提高可靠性。常见的多级缓存方案包括EHCache+Redis、Guava Cache+Redis等。多级缓存的优点是兼顾了本地缓存和分布式缓存的优点,使得缓存系统更灵活、性能更强。
非阻塞IO(Non-blocking IO)模型通过使用非阻塞的socket来实现,允许在单线程中同时处理多个连接,减少线程的切换和资源占用。
异步IO(Asynchronous IO)模型通过使用回调或事件驱动的方式,在发起IO操作后可以继续处理其他任务,当IO操作完成时触发回调函数,提高IO的效率和吞吐量。
选择适合的IO模型需要根据具体的应用场景和需求,综合考虑并发连接数、系统资源、响应时间等因素。
选择器(Selector)
选择器是Java NIO中的一个重要组件,它可以用于同时监控多个通道的读写事件,并在有事件发生时立即做出响应。选择器可以实现单线程监听多个通道的效果,从而提高系统吞吐量和运行效率。
通道(Channel)
通道是一个用于读写数据的对象,类似于Java IO中的流(Stream)。与流不同的是,通道可以进行非阻塞式的读写操作,并且可以同时进行读写操作。通道分为两种类型:FileChannel和SocketChannel,分别用于文件和网络
通信。
缓冲区(Buffer)
在Java NIO中,所有数据都是通过缓冲区对象进行传输的。缓冲区是一段连续的内存块,可以保存需要读写的数据。缓冲区对象包含了一些状态变量,例如容量(capacity)、限制(limit)、位置(position)等,用于控制数据的读写。
方面 | http协议 | rpc协议 |
---|---|---|
传输层 | 基于TCP,有特定的传输格式,包含大量的头部信息,数据传输效率低 | 基于TCP或UDP,自定义数据格式,数据传输效率高 |
通用性 | 不关心实现细节,跨语言、跨平台,适合部门间或外部服务的调用 | 需要在API层面进行封装,限制了开发的语言环境,适合内部服务的调用 |
开发难度 | 相对简单,只需遵循REST规范,请求、响应等细节需要自己实现 | 相对复杂,需要考虑server选择、序列化、通信、容错等功能 |
速度 | 较慢,受到HTTP头部信息和TCP握手的影响 | 较快,数据格式简洁,通信方式可靠 |
Http连接池是一种用于管理和复用HTTP连接的技术,可以提高HTTP请求的性能和效率。以下是几种常见的Http连接池实现技术:
以下是一些开源http连接池实现技术:
性能优化同步变异步是一种常见的编程模式,可以提高系统的响应速度和吞吐量。同步操作会导致请求一直阻塞,直到失败或者成功的返回结果。异步操作可以支持横向扩容,可以缓解瞬间的请求压力,使得请求变得平滑。
如果一个接口中需要进行多步,而这些业务操作又是各自独立的,传统的依据代码顺序同步执行又比较耗时,传统的优化的空间又比较少,这时就可以考虑使用多线程的方式优化接口,让同步变异步,接口业务操作并行处理,极大提升接口的性能。
在微服务架构中,系统性能监控通常使用以下工具和技术:
分布式追踪工具:分布式追踪工具用于跟踪和监控微服务之间的请求链路,帮助发现性能瓶颈和故障点。常见的分布式追踪工具包括Zipkin、Jaeger和SkyWalking等。
指标监控和时序数据库:指标监控工具用于收集、存储和可视化系统的关键指标和性能数据,帮助用户实时了解系统的状态和性能。常见的指标监控工具包括Prometheus、InfluxDB和Grafana等。
日志管理和分析工具:日志管理和分析工具用于收集、存储和分析微服务的日志数据,帮助诊断和解决问题。常见的日志管理和分析工具包括ELK Stack(Elasticsearch、Logstash、Kibana)、Splunk和Graylog等。
容器监控和管理工具:如果微服务部署在容器化平台上,如Docker和Kubernetes,可以使用容器监控和管理工具来监控容器的资源使用情况、网络通信和调度性能等。常见的容器监控和管理工具包括cAdvisor、Prometheus Operator和Kubernetes Dashboard等。
这些工具和技术可以提供实时的系统性能监控、故障排查和性能优化的能力,帮助开发人员和运维团队监控和管理微服务架构中的性能和可用性。选择合适的工具和技术需要考虑具体的需求、技术栈和可扩展性要求。
系统性能优化的架构优化是关键的一部分,它包括以下几个方面的技术和策略:
这些架构优化技术和策略可以根据具体的应用需求和系统瓶颈进行选择和应用。通过合理的架构设计和优化,可以提升系统的性能、可伸缩性和可用性,确保系统能够承受高负载和高并发的请求。
系统优化是对整个系统的优化,它可以通过调整系统的配置和参数来提高系统的性能。以下是一些常见的系统优化技巧:
空间换时间:利用内存、缓存等存储设备来减少磁盘或网络的读写操作,提高数据访问的速度。
时间换空间:当空间成为瓶颈时,可以采用分批处理、压缩、分区等方式来减少空间占用,降低数据传输的开销。
关闭不必要的服务:系统中运行的服务越多,系统的负担就越重,因此应该关闭不必要的服务来减轻系统的负担。例如,可以使用任务管理器来关闭不必要的进程和服务。
调整进程优先级:进程优先级决定了操作系统分配资源的顺序,因此可以通过调整进程优先级来优化系统性能。例如,可以将重要的进程设置为高优先级,以确保它们能够获得足够的资源。
使用性能监测工具:性能监测工具可以帮助用户实时监测系统的性能状况,并提供相应的优化建议。例如,可以使用Windows自带的任务管理器或第三方性能监测工具来监控系统的CPU、内存、磁盘等性能指标。
定期进行系统维护:定期进行系统维护可以清理系统垃圾文件、修复系统错误、更新系统补丁等,从而提高系统的稳定性和性能。例如,可以定期进行磁盘碎片整理、注册表清理、病毒扫描等操作。
作者:玄明Hanko
链接:https://juejin.cn/post/7257520279311220796
来源:稀土掘金
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。