当前位置:   article > 正文

Hadoop文件系统的接口(二)_基于hadoop文件读写接口

基于hadoop文件读写接口


HDFS全称是Hadoop Distributed System。HDFS是为以流的方式存取大文件而设计的。适用于几百MB,GB以及TB,并写一次读多次的场合。而对于低延时数据访问、大量小文件、同时写和任意的文件修改,则并不是十分适合。


hadoop提供了许多文件系统的接口,用户可使用URI方案选取合适的文件系统来实现交互。
(1)接口
       hadoop是使用Java编写的。而Hadoop中不同文件系统之间的交互是由java API进行调节的。事实上,前面使用的文件系统的shell就是一个java应用,它使用java文件系统来提供文件系统操作。即使其他文件系统比如FTP、S3都有自己的访问工具,这些接口在HDFS中还是广泛使用,主要用来进行hadoop文件系统之间的协作。
(2)Thrift
      上面提到可以通过java API 与Hadoop的文件系统进行交互,而对于其它非java应用访问hadoop文件系统则比较麻烦。Thriftfs分类单元中的Thrift API 可通过将Hadoop文件系统展示为一个Apache Thrift服务来填补这个不足,让任何有Thrift绑定的语言都能轻松地与Hadoop文件系统进行交互。Thrift是由Facebook公司开发的一种可伸缩的跨语言服务的发展软件框架。Thrift解决了各系统间大数据量的传输通信,以及系统之间语言环境不同而需要跨平台的问题。在多种不同的语言之间通信时,Thrift可以作为二进制的高性能的通信中间件,它支持数据序列化和多种类型的RPC服务。
(3)C语言库
        hadoop提供了映射java文件系统接口的C语言库----libhdfs。libhdfs可以编写为一个访问HDFS的C语言库,实际上,它可以访问任意的Hadoop文件系统,也可以使用JNI(Java Native Interface)来调用java文件系统的客户端。
(4)FUSE
        FUSE允许文件系统整合为一个Unix文件系统并在用户空间中执行。通过使用Hadoop Fuse-DFS的contrib模块支持任意的Hadoop文件系统作为一个标准文件系统进行挂载,便可以使用UNIX的工具和文件系统进行交互,还可以通过任意一种编程语言使用POSIX库来访问文件系统。
(5)WebDAV
         WebDAV是一系列支持编辑和更新文件的HTTP扩展。在大部分的操作系统中,WebDAV共享都可以作为文件系统进行挂载,因此,通过WebDEV向外提供HDFS或其它Hadoop文件系统,可以将HDFS作为一个标准的文件系统进行访问。
(6)其他HDFS接口
           HTTP-HDFS定义了一个只读接口,用来在HTTP上检索目录列表和数据。NameNode的嵌入式Web服务器运行在50070端口上,以XML格式提供服务,文件数据DataNood通过它们的Web服务器50075端口向NameNode提供。这个协议并不局限于某个HDFS版本,所以用户可以自己编写使用HTTP从运行不同版本的Hadoop的HDFS中读取数据。HftpFileSystem就是其中一种实现,它是一个通过HTTP和HDFS交流的hadoop文件系统,是HTTPS的变体。

           FTP:Hadoop接口中还有一个HDFS的FTP接口,它允许使用FTP协议和HDFS交互,即使用FTP客户端和HDFS进行交互。


hadoop学习笔记:hadoop文件系统浅析

1.什么是分布式文件系统?

管理网络中跨多台计算机存储的文件系统称为分布式文件系统。

2.为什么需要分布式文件系统了?

原因很简单,当数据集的大小超过一台独立物理计算机的存储能力时候,就有必要对它进行分区(partition)并存储到若干台单独计算机上。

3.分布式系统比传统的文件的系统更加复杂

因为分布式文件系统架构在网络之上,因此分布式系统引入了网络编程的复杂性,所以分布式文件系统比普通文件系统更加复杂。

4.Hadoop的文件系统

很多童鞋会把hdfs等价于hadoop的文件系统,其实hadoop是一个综合文件系统抽象,而hdfs是hadoop旗舰级文件系统,hadoop除了hdfs还能集成其他文件系统。Hadoop的这个特点充分体现了hadoop的优良的可扩展性。

在hadoop里,hadoop定义了一个抽象的文件系统的概念,具体就是hadoop里面定义了一个java的抽象类:org.apache.hadoop.fs.FileSystm,这个抽象类用来定义hadoop中的一个文件系统接口,只要某个文件系统实现了这个接口,那么它就可以作为hadoop支持的文件系统。下面是目前实现了hadoop抽象文件类的文件系统,如下表所示:

 

文件系统

URI方案

Java实现

(org.apache.hadoop)

定义

Local

file

fs.LocalFileSystem

支持有客户端校验和本地文件系统。带有校验和的本地系统文件在fs.RawLocalFileSystem中实现。

HDFS

hdfs

hdfs.DistributionFileSystem

Hadoop的分布式文件系统。

HFTP

hftp

hdfs.HftpFileSystem

支持通过HTTP方式以只读的方式访问HDFS,distcp经常用在不同的HDFS集群间复制数据。

HSFTP

hsftp

hdfs.HsftpFileSystem

支持通过HTTPS方式以只读的方式访问HDFS。

HAR

har

fs.HarFileSystem

构建在Hadoop文件系统之上,对文件进行归档。Hadoop归档文件主要用来减少NameNode的内存使用

KFS

kfs

fs.kfs.KosmosFileSystem

Cloudstore(其前身是Kosmos文件系统)文件系统是类似于HDFS和Google的GFS文件系统,使用C++编写。

FTP

ftp

fs.ftp.FtpFileSystem

由FTP服务器支持的文件系统。

S3(本地)

s3n

fs.s3native.NativeS3FileSystem

基于Amazon S3的文件系统。

S3(基于块)

s3 

fs.s3.NativeS3FileSystem

基于Amazon S3的文件系统,以块格式存储解决了S3的5GB文件大小的限制。

最后我要强调一点:在hadoop里有一个文件系统概念,例如上面的FileSystem抽象类,它是位于hadoop的Common项目里,主要是定义一组分布式文件系统和通用的I/O组件和接口,hadoop的文件系统准确的应该称作hadoop I/O。而HDFS是实现该文件接口的hadoop自带的分布式文件项目,hdfs是对hadoop I/O接口的实现。

下面我给大家展示一张表,这样大家对hadoop的FileSystem里的相关API操作就比较清晰了,表如下所示:

Hadoop的FileSystem

Java操作

Linux操作

描述

URL.openSteam

FileSystem.open

FileSystem.create

FileSystem.append

URL.openStream

open

打开一个文件

FSDataInputStream.read

InputSteam.read

read

读取文件中的数据

FSDataOutputStream.write

OutputSteam.write

write

向文件写入数据

FSDataInputStream.close

FSDataOutputStream.close

InputSteam.close

OutputSteam.close

close

关闭一个文件

FSDataInputStream.seek

RandomAccessFile.seek

lseek

改变文件读写位置

FileSystem.getFileStatus

FileSystem.get*

File.get*

stat

获取文件/目录的属性

FileSystem.set*

File.set*

Chmod等

改变文件的属性

FileSystem.createNewFile

File.createNewFile

create

创建一个文件

FileSystem.delete

File.delete

remove

从文件系统中删除一个文件

FileSystem.rename

File.renameTo

rename

更改文件/目录名

FileSystem.mkdirs

File.mkdir

mkdir

在给定目录下创建一个子目录

FileSystem.delete

File.delete

rmdir

从一个目录中删除一个空的子目录

FileSystem.listStatus

File.list

readdir

读取一个目录下的项目

FileSystem.getWorkingDirectory

 

getcwd/getwd

返回当前工作目录

FileSystem.setWorkingDirectory

 

chdir

更改当前工作目录

有了这张表,大家对FileSystem的理解应该会清晰多了吧。

大家从对照表里会发现,hadoop的FileSystem里有两个类:FSDataInputStream和FSDataOutputStream类,它们相当于java I/O里的InputStream和Outputsteam,而事实上这两个类是继承java.io.DataInputStream和java.io.DataOutputStream。

至于关于hadoop I/O本文今天不做介绍,以后也许会专门写篇文章讲讲我自己的理解,不过为了给大家一个清晰的印象,我在博客园里找到了两篇文章,有兴趣的童鞋可以好好看看看,连接如下:

http://www.cnblogs.com/xuqiang/archive/2011/06/03/2042526.html

http://www.cnblogs.com/xia520pi/archive/2012/05/28/2520813.html

5.数据的完整性

数据完整性也就是检测数据是否损坏的技术。Hadoop用户肯定都希望系统在存储和处理数据时候,数据不会有任何的丢失或损坏,尽管磁盘或网络上的每个I/O操作都不太可能将错误引入到自己正在读写的数据里,但是如果系统需要处理的数据量大到hadoop能够处理的极限,数据被损坏的概率就很高了。Hadoop引入了数据完整性校验的功能,下面我将其原理描述如下:

检测数据是否损坏的措施是,在数据第一次引入系统时候计算校验和(checksum),并在数据通过一个不可靠的通道时候进行传输时再次计算校验和,这样就能发现数据是否损坏了,如果两次计算的校验和不匹配,你就认为数据已经损坏了,但是该技术不能修复数据,它只能检测出错误。常用的错误检测码是CRC-32(循环冗余校验),任何大小的数据输入均计算得到一个32位的整数校验和。

6.压缩与输入分片

文件压缩有两大好处:一是可以减少存储文件所需要的磁盘空间,二是可以加速数据在网络和磁盘上的传输。对于处理海量数据的hadoop而言,这两个好处就变得相当重要了,所以理解hadoop的压缩是很有必要的,下表列出了hadoop支持的压缩格式,如下表:

 压缩格式

 工具

 算法

 文件扩展名

 多文件

 可分割性

 DEFLATE

 无

 DEFLATE

 .deflate

 不

 不

 gzip

 gzip

 DEFLATE

 .gz

 不

 不

 ZIP

 zip

 DEFLATE

 .zip

 是

 是,在文件范围内

 bzip2

 bzip2

 bzip2

 .bz2

 不

 是

 LZO

 lzop

 LZO

 .lzo

 不

 是

 

 

 

 

 

 

 

 

 

 

在hadoop对于压缩有两个指标很重要一个是压缩率还有就是压缩速度,下表列出一些压缩格式在此方面表现的性能,如下所示:

压缩算法

原始文件大小

压缩后的文件大小

压缩速度

解压缩速度

gzip

8.3GB

1.8GB

17.5MB/s

58MB/s

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/你好赵伟/article/detail/276788
推荐阅读
相关标签
  

闽ICP备14008679号