赞
踩
学习文章
原文如下:https://ieeexplore.ieee.org/document/8975787/
共两个文件,主文件run_this.py,强化学习DQN模块RL_brain.py
from RL_brain import DeepQNetwork
import numpy as np
np.random.seed(6)
actions=np.array([[0,0],[0,0.1],[0,0.2],[0,0.3],[0,0.4],[0,0.5],[0,0.6],[0,0.7],[0,0.8],[0,0.9],[0,1],
[1, 0], [1, 0.1], [1, 0.2], [1, 0.3], [1, 0.4], [1, 0.5], [1, 0.6], [1, 0.7], [1, 0.8], [1, 0.9],
[1, 1],
[2, 0], [2, 0.1], [2, 0.2], [2, 0.3], [2, 0.4], [2, 0.5], [2, 0.6], [2, 0.7], [2, 0.8], [2, 0.9],
[2, 1],
[3, 0], [3, 0.1], [3, 0.2], [3, 0.3], [3, 0.4], [3, 0.5], [3, 0.6], [3, 0.7], [3, 0.8], [3, 0.9],
[3, 1]])
n_actions = len(actions)
n_features=14 #The number of features in your state space
lam_local,beta_local,cycle_perbyte,energy_per_l= 0.6,0.4,1,6
lam_re,beta_re,energy_per_r = 0.8,0.2,0.3
local_core_max,local_core_min=200,50
d2d_core_max,d2d_core_min=400,150
upload_max,upload_min = 350,100
download_max,download_min = 600,250
def reset():
workload = np.random.randint(2000,3000)#定义工作量
local_comp = np.random.randint(150,200)#定义本地可用计算资源
upload = np.array([np.random.randint(150,200),np.random.randint(150,200),
np.random.randint(150,200),np.random.randint(150,200)])
download = np.array([np.random.randint(150,200),np.random.randint(150,200),
np.random.randint(150,200),np.random.randint(150,200)])
# download = np.array([np.random.randint(300,500),np.random.randint(300,500),
# np.random.randint(300,500),np.random.randint(300,500)])
# d2d_cap = np.array([np.random.randint(200,300),np.random.randint(200,300),
# np.random.randint(200,300),np.random.randint(200,300)])
d2d_cap = np.array([np.random.randint(150,200),np.random.randint(150,200),
np.random.randint(150,200),np.random.randint(150,200)])#定义helper的可用计算资源,数量为4
observation=np.array([workload,local_comp])
return np.hstack((observation,d2d_cap,upload,download))
def d2d_step(observation,action,time1):
workload,local_comp,d2d_cap,upload,download= \
observation[0],observation[1],observation[2:6],observation[6:10],observation[10:14]
target_d2d,percen = int(action[0]),action[1]
#贪心算法,每次选择可用计算资源最多的helper
MAX_c = max(d2d_cap)
# wait_local = (local_core_max-local_comp)*0.1
# wait_d2d = (np.array([d2d_core_max,d2d_core_max,d2d_core_max,d2d_core_max])-d2d_cap)*0.01
wait_local,wait_d2d = 2,1
local_cost = lam_local*workload*cycle_perbyte*(1-percen)/(local_comp)+beta_local*workload*energy_per_l*(1-percen)+lam_local*wait_local
local_only = lam_local*workload*cycle_perbyte/(local_comp)+beta_local*workload*energy_per_l+lam_local*wait_local
remote_only = workload * lam_re * (cycle_perbyte / (d2d_cap[target_d2d]) +
percen / upload[target_d2d] + 0.01 / download[target_d2d]) + lam_re * wait_d2d + \
beta_re * energy_per_r * workload
remote_cost = workload * lam_re * ((cycle_perbyte * percen) / (d2d_cap[target_d2d])+
percen / upload[target_d2d] + (percen * 0.01) / download[target_d2d]) + lam_re * wait_d2d + \
beta_re * energy_per_r * workload * percen
total_cost = workload * lam_local * ((cycle_perbyte * (1 - percen)) / (local_comp) +
beta_local * energy_per_l * (1 - percen)) + lam_local * wait_local + \
workload * lam_re * ((cycle_perbyte * percen) / (d2d_cap[target_d2d])+
percen / upload + (percen * 0.01) / download) + lam_re * wait_d2d + \
beta_re * energy_per_r * workload * percen
total_cost_ = local_cost+remote_cost
# reward = -total_cost_
reward = -total_cost_
# reward = (local_only-total_cost_)/local_only
np.random.seed(np.random.randint(1,1000))
#建立下一个过程的模拟生成
a = np.random.uniform()
b=0.9
if (time1>=0) and (time1<=36):
if (a>b) :
local_comp = min(local_comp+np.random.randint(0,6),local_core_max)
for i in range(4):
d2d_cap[i] = min(d2d_cap[i] + np.random.randint(0, 15), d2d_core_max)
download[i] = min(download[i]+np.random.randint(0,8),download_max)
upload[i] = min(upload[i]+np.random.randint(0,5),upload_max)
else:
local_comp = max(local_comp+np.random.randint(-5,0),local_core_min)
for i in range(4):
d2d_cap[i] = max(d2d_cap[i] + np.random.randint(-14, 0), d2d_core_min)
download[i] = max(download[i] - np.random.randint(0, 8), download_min)
upload[i] = max(upload[i] - np.random.randint(0, 5), upload_min)
workload += np.random.randint(-100, 200)
elif (time1>36) and (time1<=72):
if (a < b):
local_comp = min(local_comp + np.random.randint(0, 6), local_core_max)
for i in range(4):
d2d_cap[i] = min(d2d_cap[i] + np.random.randint(0, 15), d2d_core_max)#仿真的这么随便?,香农公式随便给个速率?
download[i] = min(download[i] + np.random.randint(0, 8), download_max)
upload[i] = min(upload[i] + np.random.randint(0, 5), upload_max)
else:
local_comp = max(local_comp + np.random.randint(-5, 0), local_core_min)
for i in range(4):
d2d_cap[i] = max(d2d_cap[i] + np.random.randint(-14, 0), d2d_core_min)
download[i] = max(download[i] - np.random.randint(0, 8), download_min)
upload[i] = max(upload[i] - np.random.randint(0, 5), upload_min)
workload += np.random.randint(-200, 100)
elif (time1>72) and (time1<=108):
if (a > b):
local_comp = min(local_comp + np.random.randint(0, 6), local_core_max)
for i in range(4):
d2d_cap[i] = min(d2d_cap[i] + np.random.randint(0, 15), d2d_core_max)
download[i] = min(download[i] + np.random.randint(0, 8), download_max)
upload[i] = min(upload[i] + np.random.randint(0, 5), upload_max)
else:
local_comp = max(local_comp + np.random.randint(-5, 0), local_core_min)
for i in range(4):
d2d_cap[i] = max(d2d_cap[i] + np.random.randint(-14, 0), d2d_core_min)
download[i] = max(download[i] - np.random.randint(0, 8), download_min)
upload[i] = max(upload[i] - np.random.randint(0, 5), upload_min)
workload += np.random.randint(-100, 200)
observation_ = np.array([workload,local_comp])
observation_1 = np.hstack((observation_,d2d_cap,upload,download))
return observation_1,reward,local_only,remote_only
def run_d2d_offloading():
step = 0
local_only_cost,remote_only_cost,total_cost=[],[],[]
for episode in range(100):
observation = reset()
for time_1 in range(108):
print("当前状态值为:",observation)
action = RL.choose_action(observation)
print(action)
observation_, reward ,local_only,remote_only= d2d_step(observation,action,time_1)
RL.store_transition(observation, action, reward, observation_)
if (step > 20) and (step % 5 == 0):
RL.learn()
if step>20 and step % 100 == 0:
local_only_cost.append(local_only)
remote_only_cost.append(remote_only)
total_cost.append(-reward)
observation = observation_
step += 1
import matplotlib.pyplot as plt
plt.rc('font',family='Times New Roman',size=14)
plt.rc('axes',unicode_minus=False)
plt.plot(np.arange(len(local_only_cost)), local_only_cost,'b')
plt.plot(np.arange(len(remote_only_cost)), remote_only_cost,'g')
plt.plot(np.arange(len(total_cost)), total_cost,'r')
plt.legend(("Execute_Local","Execute_d2d","d2d_hybird"))
plt.ylabel('Cost')
plt.xlabel('training steps')
plt.savefig('compare.png',dpi=600)
plt.show()
# end of game
print('game over')
if __name__ == "__main__":
# maze game
RL = DeepQNetwork(n_actions, n_features,
learning_rate=0.01,
reward_decay=0.9,
e_greedy=0.99,
replace_target_iter=200,
memory_size=2000,
output_graph=True
)
run_d2d_offloading()
RL.plot_cost()
import numpy as np
import pandas as pd
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
import os
os.environ['KMP_DUPLICATE_LIB_OK']='TRUE'
np.random.seed(1)
# tf.set_random_seed(1)
actions=np.array([[0,0],[0,0.1],[0,0.2],[0,0.3],[0,0.4],[0,0.5],[0,0.6],[0,0.7],[0,0.8],[0,0.9],[0,1],
[1, 0], [1, 0.1], [1, 0.2], [1, 0.3], [1, 0.4], [1, 0.5], [1, 0.6], [1, 0.7], [1, 0.8], [1, 0.9],
[1, 1],
[2, 0], [2, 0.1], [2, 0.2], [2, 0.3], [2, 0.4], [2, 0.5], [2, 0.6], [2, 0.7], [2, 0.8], [2, 0.9],
[2, 1],
[3, 0], [3, 0.1], [3, 0.2], [3, 0.3], [3, 0.4], [3, 0.5], [3, 0.6], [3, 0.7], [3, 0.8], [3, 0.9],
[3, 1]])
# Deep Q Network off-policy
class DeepQNetwork:
def __init__(
self,
n_actions,
n_features,
learning_rate=0.05,
reward_decay=0.9,
e_greedy=0.99,
replace_target_iter=300,
memory_size=500,
batch_size=32,
e_greedy_increment=0.001,
output_graph=True,
):
self.n_actions = n_actions
self.n_features = n_features
self.lr = learning_rate
self.gamma = reward_decay
self.epsilon_max = e_greedy
self.replace_target_iter = replace_target_iter
self.memory_size = memory_size
self.batch_size = batch_size
self.epsilon_increment = e_greedy_increment
# self.epsilon = 0 if e_greedy_increment is not None else self.epsilon_max
self.epsilon = 0
# total learning step
self.learn_step_counter = 0
# initialize zero memory [s, a, r, s_]#每个状态用n个feature表示
self.memory = np.zeros((self.memory_size, n_features * 2 + 3))#初始化经验池
# consist of [target_net, evaluate_net]
self._build_net()
t_params = tf.get_collection('target_net_params')
e_params = tf.get_collection('eval_net_params')
self.replace_target_op = [tf.assign(t, e) for t, e in zip(t_params, e_params)]
self.sess = tf.Session()
if output_graph:
# $ tensorboard --logdir=logs
# tf.train.SummaryWriter soon be deprecated, use following
tf.summary.FileWriter("logs/", self.sess.graph)
self.sess.run(tf.global_variables_initializer())
self.cost_his = []
def _build_net(self):#建立目标网络和评估网络
# ------------------ build evaluate_net ------------------
self.s = tf.placeholder(tf.float32, [None, self.n_features], name='s') # input
self.q_target = tf.placeholder(tf.float32, [None, self.n_actions], name='Q_target') # for calculating loss
with tf.variable_scope('eval_net'):
# c_names(collections_names) are the collections to store variables
c_names, n_l1, w_initializer, b_initializer = \
['eval_net_params', tf.GraphKeys.GLOBAL_VARIABLES], 10, \
tf.random_normal_initializer(0., 0.3), tf.constant_initializer(0.1) # config of layers
# first layer. collections is used later when assign to target net
with tf.variable_scope('l1'):
w1 = tf.get_variable('w1', [self.n_features, n_l1], initializer=w_initializer, collections=c_names)
b1 = tf.get_variable('b1', [1, n_l1], initializer=b_initializer, collections=c_names)
l1 = tf.nn.relu(tf.matmul(self.s, w1) + b1)
# second layer. collections is used later when assign to target net
with tf.variable_scope('l2'):
w2 = tf.get_variable('w2', [n_l1, self.n_actions], initializer=w_initializer, collections=c_names)
b2 = tf.get_variable('b2', [1, self.n_actions], initializer=b_initializer, collections=c_names)
self.q_eval = tf.matmul(l1, w2) + b2
with tf.variable_scope('loss'):
self.loss = tf.reduce_mean(tf.squared_difference(self.q_target, self.q_eval))
with tf.variable_scope('train'):
self._train_op = tf.train.RMSPropOptimizer(self.lr).minimize(self.loss)
# ------------------ build target_net ------------------
self.s_ = tf.placeholder(tf.float32, [None, self.n_features], name='s_') # input
with tf.variable_scope('target_net'):
# c_names(collections_names) are the collections to store variables
c_names = ['target_net_params', tf.GraphKeys.GLOBAL_VARIABLES]
# first layer. collections is used later when assign to target net
with tf.variable_scope('l1'):
w1 = tf.get_variable('w1', [self.n_features, n_l1], initializer=w_initializer, collections=c_names)
b1 = tf.get_variable('b1', [1, n_l1], initializer=b_initializer, collections=c_names)
l1 = tf.nn.relu(tf.matmul(self.s_, w1) + b1)
# second layer. collections is used later when assign to target net
with tf.variable_scope('l2'):
w2 = tf.get_variable('w2', [n_l1, self.n_actions], initializer=w_initializer, collections=c_names)
b2 = tf.get_variable('b2', [1, self.n_actions], initializer=b_initializer, collections=c_names)
self.q_next = tf.matmul(l1, w2) + b2
def store_transition(self, s, a, r, s_):
if not hasattr(self, 'memory_counter'):#函数hasattr查看对象中是否含有属性
self.memory_counter = 0
transition = np.hstack((s, a, r, s_))#将每一行实例按行存储
print("按行存入经验元组:",transition)
# replace the old memory with new memory
index = self.memory_counter % self.memory_size
self.memory[index, :] = transition
self.memory_counter += 1
def choose_action(self, observation):#选择动作
# to have batch dimension when feed into tf placeholder
observation = observation[np.newaxis, :]
print("当前贪心率:",self.epsilon)
if np.random.random() < self.epsilon:
# forward feed the observation and get q value for every actions
actions_value = self.sess.run(self.q_eval, feed_dict={self.s: observation})
index = np.argmax(actions_value)
action = actions[index]#找Q值最大的动作,即贪心策略
else:
index = np.random.randint(0, self.n_actions)
action = actions[index]
return action
def learn(self):
# check to replace target parameters
if self.learn_step_counter % self.replace_target_iter == 0:
self.sess.run(self.replace_target_op)
print('\ntarget_params_replaced\n')
# sample batch memory from all memory
if self.memory_counter > self.memory_size:
sample_index = np.random.choice(self.memory_size, size=self.batch_size)
else:
sample_index = np.random.choice(self.memory_counter, size=self.batch_size)
batch_memory = self.memory[sample_index, :]
q_next, q_eval = self.sess.run(
[self.q_next, self.q_eval],
feed_dict={
self.s_: batch_memory[:, -self.n_features:], # fixed params
self.s: batch_memory[:, :self.n_features], # newest params
})
# change q_target w.r.t q_eval's action
q_target = q_eval.copy()
batch_index = np.arange(self.batch_size, dtype=np.int32)
eval_act_index = batch_memory[:, self.n_features].astype(int)
reward = batch_memory[:, self.n_features + 2]
q_target[batch_index, eval_act_index] = reward + self.gamma * np.max(q_next, axis=1)
# train eval network
_, self.cost = self.sess.run([self._train_op, self.loss],
feed_dict={self.s: batch_memory[:, :self.n_features],
self.q_target: q_target})
if self.learn_step_counter >100:
self.cost_his.append(self.cost)
# increasing epsilon
self.epsilon = self.epsilon + self.epsilon_increment if self.epsilon < self.epsilon_max else self.epsilon_max
print("贪心率为:",self.epsilon)
self.learn_step_counter += 1
def plot_cost(self):
import matplotlib.pyplot as plt
plt.rc('font',family='Times New Roman',size=14)
plt.rc('axes',unicode_minus=False)
cost_ = self.cost_his
for i in range (100):
cost_.remove(max(cost_))
plt.plot(np.arange(len(cost_)), cost_)
plt.ylabel('Cost')
plt.xlabel('training steps')
plt.savefig('result.png',dpi=500)
plt.show()
运行结果如下,看起来效果并不是很好,参数初始化设置的不太好
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。