当前位置:   article > 正文

【算法篇】逐步理解动态规划1(斐波那契数列模型)

【算法篇】逐步理解动态规划1(斐波那契数列模型)

目录

斐波那契数列模型  

1. 第N个泰波那契数

 2.使用最小花费爬楼梯

3.解码方法 


         学过算法的应该知道,动态规划一直都是一个非常难的模块,无论是状态转移方程的定义还是dp表的填表,都非常难找到思路。在这个算法的支线专题中我会结合很多力扣题型,由简单到复杂,带大家深度剖析动态规划类的题型,欢迎大家关注啊。

顺序:

题目链接-》算法思路-》代码呈现

斐波那契数列模型  

动态规划类题目解题步骤:

  1. 依据题目进行状态表示(dp[i]的含义)
  2. 写出状态转移方程(类似于dp[i]=dp[i-1]+dp[i-2])
  3. 为防止填表时数组越界,对dp表进行初始化(dp[0]=dp[1]=1)
  4. 搞清楚填表顺序(从前往后或者从后往前)
  5. 利用dp表返回问题答案

1. 第N个泰波那契数

题目链接:

https://leetcode.cn/problems/n-th-tribonacci-number/description/

算法思路:

1. 状态表⽰:
这道题可以「根据题⽬的要求」直接定义出状态表⽰:
dp[i] 表⽰:第 i 个泰波那契数的值。
2. 状态转移⽅程:
题⽬已经⾮常贴⼼的告诉我们了:
dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3]
3. 初始化:
从我们的递推公式可以看出, dp[i] i = 0 以及 i = 1 的时候是没有办法进⾏推导的,因为 dp[-2] dp[-1] 不是⼀个有效的数据。因此我们需要在填表之前,将 0, 1, 2 位置的值初始化。题⽬中已经告诉我们 dp[0] = 0,dp[1] = dp[2] = 1 。
4. 填表顺序:
毫⽆疑问是「从左往右」。
5. 返回值:
应该返回 dp[n] 的值。

代码呈现:

  1. class Solution {
  2. public int tribonacci(int n) {
  3. if(n==0){
  4. return 0;
  5. }
  6. if(n==1||n==2){
  7. return 1;
  8. }
  9. int[] dp=new int[n+1];
  10. dp[0]=0;
  11. dp[1]=1;
  12. dp[2]=1;
  13. for(int i=3;i<=n;i++){
  14. dp[i]=dp[i-1]+dp[i-2]+dp[i-3];
  15. }
  16. return dp[n];
  17. }
  18. }

 2.使用最小花费爬楼梯

题目链接:

https://leetcode.cn/problems/min-cost-climbing-stairs/description/

算法思路:

1. 状态表⽰:
这道题可以根据「经验 + 题⽬要求」直接定义出状态表⽰:
dp[i] 表⽰:到达 i 位置时的最⼩花费。(注意:到达 i 位置的时候, i 位置的钱不需要算上)
2. 状态转移⽅程:
根据最近的⼀步,分情况讨论:
  • 先到达 i - 1 的位置,然后⽀付 cost[i - 1] ,接下来⾛⼀步⾛到 i 位置: dp[i - 1] + csot[i - 1]
  • 先到达 i - 2 的位置,然后⽀付 cost[i - 2] ,接下来⾛⼀步⾛到 i 位置: dp[i - 2] + csot[i - 2]
3. 初始化:
从我们的递推公式可以看出,我们需要先初始化 i = 0 ,以及 i = 1 位置的值。容易得到dp[0] = dp[1] = 0 ,因为不需要任何花费,就可以直接站在第 0 层和第 1 层上。
4. 填表顺序:
根据「状态转移⽅程」可得,遍历的顺序是「从左往右」。
5. 返回值:
根据「状态表⽰以及题⽬要求」,需要返回 dp[n] 位置的值。

代码呈现:

  1. class Solution {
  2. public int minCostClimbingStairs(int[] cost) {
  3. int size=cost.length;
  4. if(size==2) return Math.min(cost[0],cost[1]);
  5. int[] dp=new int[size+1];
  6. dp[0]=0;
  7. dp[1]=0;
  8. dp[2]=Math.min(cost[0],cost[1]);
  9. for(int i=3;i<=size;i++){
  10. dp[i]=Math.min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
  11. }
  12. return dp[size];
  13. }
  14. }

3.解码方法 

题目链接:

https://leetcode.cn/problems/decode-ways/

 算法思路:

类似于斐波那契数列
1. 状态表⽰:
根据以往的经验,对于⼤多数线性 dp ,我们经验上都是「以某个位置结束或者开始」做⽂章,这
⾥我们继续尝试「⽤ i 位置为结尾」结合「题⽬要求」来定义状态表⽰。
dp[i] 表⽰:字符串中 [0 i] 区间上,⼀共有多少种编码⽅法。
2. 状态转移⽅程:
定义好状态表⽰,我们就可以分析 i 位置的 dp 值,如何由「前⾯」或者「后⾯」的信息推导出
来。
关于 i 位置的编码状况,我们可以分为下⾯两种情况:
i. i 位置上的数单独解码成⼀个字⺟;
ii. i 位置上的数与 i - 1 位置上的数结合,解码成⼀个字⺟。
下⾯我们就上⾯的两种解码情况,继续分析:
  • i 位置上的数与 i - 1 位置上的数结合在⼀起,解码成⼀个字⺟,也存在「解码成功」和「解码失败」两种情况:

i. 解码成功:当结合的数在 [10, 26] 之间的时候,说明 [i - 1, i] 两个位置是可以解码成功的,那么此时 [0, i] 区间上的解码⽅法应该等于 [0, i - 2 ] 区间上的解码⽅法,原因同上。此时 dp[i] = dp[i - 2]

ii. 解码失败:当结合的数在 [0, 9] [27 , 99] 之间的时候,说明两个位置结合后解码失败(这⾥⼀定要注意 00 01 02 03 04 ...... 这⼏种情况),那么此时 [0, i] 间上的解码⽅法就不存在了,原因依旧同上。此时 dp[i] = 0

  • 让 i 位置上的数单独解码成⼀个字⺟,就存在「解码成功」和「解码失败」两种情况:

i. 解码成功:当 i 位置上的数在 [1, 9] 之间的时候,说明 i 位置上的数是可以单独解 码的,那么此时 [0, i] 区间上的解码⽅法应该等于 [0, i - 1] 区间上的解码⽅ 法。因为 [0, i - 1] 区间上的所有解码结果,后⾯填上⼀个 i 位置解码后的字⺟就 可以了。此时 dp[i] = dp[i - 1]

ii. 解码失败:当 i 位置上的数是 0 的时候,说明 i 位置上的数是不能单独解码的,那么此时 [0, i] 区间上不存在解码⽅法。因为 i 位置如果单独参与解码,但是解码失败了,那么前⾯做的努⼒就全部⽩费了。此时 dp[i] = 0

3. 初始化:
⽅法⼀(直接初始化):
由于可能要⽤到 i - 1 以及 i - 2 位置上的 dp 值,因此要先初始化「前两个位置」。
初始化 dp[0]
i. s[0] == '0' 时,没有编码⽅法,结果 dp[0] = 0
ii. s[0] != '0' 时,能编码成功, dp[0] = 1
初始化 dp[1]
i. s[1] [1 9] 之间时,能单独编码,此时 dp[1] += dp[0] (原因同上,
dp[1] 默认为 0
ii. s[0] s[1] 结合后的数在 [10, 26] 之间时,说明在前两个字符中,⼜有⼀种
编码⽅式,此时 dp[1] += 1
⽅法⼆(添加辅助位置初始化):
可以在最前⾯加上⼀个辅助结点,帮助我们初始化。使⽤这种技巧要注意两个点:
i. 辅助结点⾥⾯的值要保证后续填表是正确的;
ii. 下标的映射关系
4. 填表顺序:
毫⽆疑问是「从左往右」
5. 返回值:
应该返回 dp[n - 1] 的值,表⽰在 [0, n - 1] 区间上的编码⽅法。

代码呈现:

  1. class Solution {
  2. public int numDecodings(String s) {
  3. char[] arr=s.toCharArray();
  4. int n=arr.length;
  5. int[] dp=new int[n+1];
  6. dp[0]=1;
  7. if(arr[0]=='0') dp[1]=0;
  8. else dp[1]=1;
  9. if(n==1){
  10. return dp[1];
  11. }
  12. for(int i=2;i<n+1;i++){
  13. if(arr[i-1]!='0'){
  14. dp[i]+=dp[i-1];
  15. }
  16. if(((arr[i-2]-'0')*10+(arr[i-1]-'0'))<=26&&((arr[i-2]-'0')*10+(arr[i-1]-'0'))>=10){
  17. dp[i]+=dp[i-2];
  18. }
  19. }
  20. return dp[n];
  21. }
  22. }

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/你好赵伟/article/detail/311904
推荐阅读