赞
踩
对于机械振动信号的深度学习特征提取,可以使用卷积神经网络(Convolutional Neural Network, CNN)或循环神经网络(Recurrent Neural Network, RNN)。以下是一个示例的Python代码,演示了如何使用深度学习方法提取时域和频域特征: import numpy as np import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv1D, MaxPooling1D, Flatten, Dense, LSTM # 1. 数据准备 # 假设你有一组机械振动信号数据和对应的故障标签 data = [...] # 机械振动信号数据 labels = [...] # 故障标签 # 2. 特征提取和数据预处理 # 初始化特征列表 features = [] # 提取时域和频域特征 for signal in data: time_feats = time_domain_features(signal) freq_feats = frequency_domain_features(signal, sample_rate) feats = np.concatenate((time_feats, freq_feats), axis=0) features.append(feats) # 数据预处理(标准化) features = np.array(features) scaler = StandardScaler() scaled_features = scaler.fit_transform(features) # 3. 构建深度学习模型 model = Sequential() model.add(Conv1D(filters=32, kernel_size=3, activation='relu', input_shape=(num_features, 1))) model.add(MaxPooling1D(pool_size=2)) model.add(Conv1D(filters=64, kernel_size=3, activation='relu')) model.add(MaxPooling1D(pool_size=2)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dense(num_classes, activation='softmax')) # 4. 模型训练和评估 # 编译模型 model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # 拆分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(scaled_features, labels, test_size=0.2, random_state=42) # 将输入数据转换为适合深度学习模型的形状 X_train = np.expand_dims(X_train, axis=2) X_test = np.expand_dims(X_test, axis=2) # 训练模型 model.fit(X_train, y_train, batch_size=32, epochs=10, validation_data=(X_test, y_test)) # 评估模型 loss, accuracy = model.evaluate(X_test, y_test) print("Accuracy:", accuracy) 在以上代码示例中,你需要根据实际情况自定义时域特征提取函数和频域特征提取函数,并根据数据集的特点调整模型的参数和架构。同时,你还可以尝试其他深度学习模型,如循环神经网络(RNN)或长短期记忆网络(LSTM),以适应不同的振动信号特征。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。