赞
踩
关于新闻主题分类任务:目前视频和网上的代码都不能完整的运行,所以从下载数据集开始,重新写一下。
AG_NEWS 数据集包含4个文件,如下图
classes.txt:保存类别
test.csv:测试数据,7600条
train.csv:训练数据,120000条
导入包
- import torch
- import pandas as pd
- from keras.preprocessing.text import Tokenizer
- from keras.utils import pad_sequences
- import torch.nn as nn
- import torch.nn.functional as F
- from torch.utils.data import DataLoader
- import time
- from torch.utils.data.dataset import random_split # 导入数据随机划分方法工具
- import warnings
- warnings.filterwarnings('ignore')
- def load_data(csv_file):
- df = pd.read_csv(csv_file, header=None) # pd默认第一行不读取,所以添加 header
- dataTmep = []
-
- # 逐行读取,_ 行号,row 内容
- for _, row in df.iterrows():
- label = row[0]
- context = row[1] + row[2] # 将标题,内容合并
- dataTmep.append((label, context))
- return dataTmep
-
-
- cutlen = 64
- train_dataset = load_data("./data/ag_news_csv/train.csv")
- test_dataset = load_data("./data/ag_news_csv/test.csv")
将读取到的文件打包,形成可以读取的dataset,并生成vocab,查看结果
- def process_datasets_by_Tokenizer(train_datasets, test_datasets, cutlen=cutlen):
- tokenizer = Tokenizer()
-
- train_datasets_texts = []
- train_datasets_labels = []
- test_datasets_texts = []
- test_datasets_labels = []
-
- for index in range(len(train_datasets)):
- train_datasets_labels.append(train_datasets[index][0] - 1)
- train_datasets_texts.append(train_datasets[index][1])
-
- for index in range(len(test_datasets)):
- test_datasets_labels.append(test_datasets[index][0] - 1)
- test_datasets_texts.append(test_datasets[index][1])
-
- all_datasets_texts = train_datasets_texts + test_datasets_texts
- all_datasets_labels = train_datasets_labels + test_datasets_labels
-
- tokenizer.fit_on_texts(all_datasets_texts)
-
- train_datasets_seqs = tokenizer.texts_to_sequences(train_datasets_texts)
- test_datasets_seqs = tokenizer.texts_to_sequences(test_datasets_texts)
-
- train_datasets_seqs = pad_sequences(train_datasets_seqs, cutlen)
- test_datasets_seqs = pad_sequences(test_datasets_seqs, cutlen)
-
- train_datasets = list(zip(train_datasets_seqs, train_datasets_labels))
- test_datasets = list(zip(test_datasets_seqs, test_datasets_labels))
-
- vocab_size = len(tokenizer.index_word.keys())
- num_class = len(set(all_datasets_labels))
- return train_datasets, test_datasets, vocab_size, num_class, tokenizer
-
-
- train_datasets, test_datasets, vocab_size, num_class, tokenizer = process_datasets_by_Tokenizer(train_dataset, test_dataset, cutlen=cutlen)
-
- print("查看处理之后的数据: ")
- print("train:\n", train_datasets[:2])
- print("test:\n", test_datasets[:2])
- print("vocab_size = {}, num_class = {}".format(vocab_size, num_class))
- print()
- BATCH_SIZE = 16
- VOCAB_SIZE = vocab_size # 获得整个语料包含的不同词汇总数
- NUM_CLASS = num_class # 获得类别总数
- EMBED_DIM = 128
-
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
-
-
- class TextSentiment(nn.Module):
- def __init__(self, vocab_size, embed_dim, num_class):
- """
- 类的初始化函数
- :param vocab_size: 整个语料包含的不同词汇总数
- :param embed_dim: 指定词嵌入的维度
- :param num_class: 文本分类的类别总数
- """
- super().__init__()
-
- self.embedding = nn.Embedding(vocab_size, embed_dim, sparse=True)
- self.fc = nn.Linear(embed_dim, num_class)
- self.init_weights()
-
- def init_weights(self):
- initrange = 0.5
- self.embedding.weight.data.uniform_(-initrange, initrange)
- self.fc.weight.data.uniform_(-initrange, initrange)
- self.fc.bias.data.zero_()
-
- def forward(self, text):
- """
- 逻辑函数
- :param text: 文本数值映射后的结果
- :return: 与类别数尺寸相同的张量,用以判断文本类别
- """
- embedded = self.embedding(text)
- c = embedded.size(0) // BATCH_SIZE
- embedded = embedded[: BATCH_SIZE * c]
- embedded = embedded.transpose(1, 0).unsqueeze(0)
- embedded = F.avg_pool1d(embedded, kernel_size=c)
- return self.fc(embedded[0].transpose(1, 0))
-
-
- # 实例化模型
- model = TextSentiment(VOCAB_SIZE + 1, EMBED_DIM, NUM_CLASS).to(device)
-
- print("查看模型: ")
- print(model)
- print()
- def generate_batch(batch):
- """
- 生成 batch 数据函数
- :param batch: 由样本核对应标签的元组组成的 batch_size 大小的列表,形如[(sample1, label1), (sample2, label2)......]
- :return: 样本张量核标签各自的列表形式 (张量),形如 text = tensor([sample1, sample2....]),label = tensor([label1, label2,...])
- """
- text = []
- label = []
- for item in batch:
- text.extend(item[0])
- label.append(item[1])
- return torch.tensor(text), torch.tensor(label)
-
-
- # 假设一个输入
- print("测试将一个 batch 张量合并: ")
- batch = [(torch.tensor([3, 23, 2, 8]), 1), (torch.tensor([3, 45, 21, 6]), 0)]
- res = generate_batch(batch)
- print(res)
- print()
构建损失函数,优化器等
- criterion = torch.nn.CrossEntropyLoss().to(device) # 选择损失函数,选择预定义的交叉熵损失函数
- optimizer = torch.optim.SGD(model.parameters(), lr=4.0) # 选择随机梯度下降优化器
- scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1, gamma=0.9) # 选择优化器步长调节方法 StepLR,用来衰减学习率
定义训练函数
- def train(train_data):
- train_loss = 0
- train_acc = 0
-
- # 使用数据加载器生成 BATCH_SIZE 大小的数据进行批次训练
- data = DataLoader(train_data, batch_size=BATCH_SIZE, shuffle=True, collate_fn=generate_batch)
-
- for i, (text, cls) in enumerate(data):
- optimizer.zero_grad()
- text = text.to(device)
- cls = cls.to(device)
- output = model(text)
- loss = criterion(output, cls)
- train_loss += loss.item() # 将该批次的损失加到总损失中
- loss.backward()
- optimizer.step()
- train_acc += (output.argmax(1) == cls).sum().item() # 将该批次的准去率加到总准确率中 (返回 1 和 0,再被累加)
-
- scheduler.step()
-
- # 返回本轮训练的平均损失核平均准确率
- return train_loss / len(train_data), train_acc / len(train_data)
定义预测函数
- def valid(test_data):
- loss = 0
- acc = 0
-
- # 和训练相同,使用 DataLoader 获得训练数据生成器
- data = DataLoader(test_data, batch_size=BATCH_SIZE, collate_fn=generate_batch)
-
- for text, cls in data:
- with torch.no_grad():
- text = text.to(device)
- cls = cls.to(device)
- output = model(text)
- loss = criterion(output, cls)
- loss += loss.item() # 将损失和准确率加到总损失和准确率中
- acc += (output.argmax(1) == cls).sum().item()
-
- # 返回本轮验证的平均损失和平均准确率
- return loss / len(test_data), acc / len(test_data)
定义训练信息
- N_EPOCHS = 20 # 指定训练轮数
-
- train_len = int(len(train_datasets) * 0.95) # 从 train_datasets 取出 0.95 作为训练集,先取其长度
-
- # 然后使用 random_split 进行乱序划分,得到对应的训练集和验证集
- sub_train_, sub_valid_ = random_split(train_datasets, [train_len, len(train_datasets) - train_len])
迭代训练,并打印训练集、验证集的损失函数和准确率
- # 开始每一轮训练
- for epoch in range(N_EPOCHS):
- start_time = time.time() # 记录训练开始的时间
-
- # 调用 train 和 valid 函数得到训练和验证的平均损失,平均准确率
- train_loss, train_acc = train(sub_train_)
- valid_loss, valid_acc = valid(sub_valid_)
-
- # 计算训练和验证的总耗时
- secs = int(time.time() - start_time)
-
- # 用分钟和秒表示
- mins = secs / 60
- secs = secs % 60
-
- # 打印训练和验证耗时,平均损失,平均准确率
- print('Epoch: %d' % (epoch + 1), " | time in %d minutes, %d seconds" % (mins, secs))
- print(f'\t Loss: {train_loss: .4f}(train) \t | \t Acc: {train_acc * 100: .1f} % (train)')
- print(f'\t Loss: {valid_loss: .4f}(valid) \t | \t Acc: {valid_acc * 100: .1f} % (valid)')
- valid_loss, valid_acc = valid(test_datasets)
- print("测试集上测试: ")
- print(f'\t Loss: {valid_loss: .4f}(valid) \t | \t Acc: {valid_acc * 100: .1f} % (valid)')
- print()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。