当前位置:   article > 正文

【GPT-SOVITS-06】特征工程-HuBert原理_gpt-sovits 源码分析

gpt-sovits 源码分析

说明:该系列文章从本人知乎账号迁入,主要原因是知乎图片附件过于模糊。

知乎专栏地址:
语音生成专栏

系列文章地址:
【GPT-SOVITS-01】源码梳理
【GPT-SOVITS-02】GPT模块解析
【GPT-SOVITS-03】SOVITS 模块-生成模型解析
【GPT-SOVITS-04】SOVITS 模块-鉴别模型解析
【GPT-SOVITS-05】SOVITS 模块-残差量化解析
【GPT-SOVITS-06】特征工程-HuBert原理

1.概述

HuBert 模型目的在于提取音频自编码特征,其核心架构如下:

说明:代码主要参考 HuggingFace 的transformers 开源库

在这里插入图片描述

  • 输入原始音频数据,通过类似Bert原理的编码器形成隐变量,即在进入多头注意力模块前增加了随机的掩码
  • 训练时,第一轮比对原始音频的 MFCC 特征做 kmean 编码,类似残差向量量化网络。针对隐变量与编码做交叉熵损失
  • 训练时,第二轮比对编码器生成的隐变量(第6/9层)做 kmean 编码,再针对隐变量与编码做交叉熵损失

与论文中的截图做一下对比:
在这里插入图片描述
在这里插入图片描述

2.核心源码解析

2.1、特征提取:HubertFeatureEncoder

在这里插入图片描述
默认为 7层一维卷积,每层卷积参数,主要是 kernel 和 stride 不同

2.2、核心编码器:HubertEncoder

在这里插入图片描述

  • 默认为 12层编码器模块
  • 在输出时,包含了最终层的输出,以及中间各层的输出

2.3、有监督微调:HubertForCTC

在这里插入图片描述

  • 论文中同样给出了基于CTC损失的微调
  • 在微调时,特征提取编码器参数固定

CTC 损失的价值,主要是用于输出和标签的不一致性。举例:
假设 hello 这个单词在10秒内完成,则按秒分帧,每一秒对应一个字母的概率。即可能是 hhhhellooo。损失计算的时候是要对比 hhhhellooo 和 hello 的差异。

3、调试代码参考

from transformers import HubertModel, HubertConfig
import torch
import librosa
import torch.nn as nn


def _test_pred_vec():
    config = HubertConfig()

    model = HubertModel(config)
    device = "cuda" if torch.cuda.is_available() else "cpu"
    model.to(device)

    wav_in = "../data/test.wav"
    audio, sr  = librosa.load(wav_in, sr=16000)

    audio = torch.from_numpy(audio).to(device)
    x = audio[None, :]

    vec = model.forward(x)

    print(vec)

def _test_ctc_loss():
    ctc_loss        = nn.CTCLoss()
    log_probs       = torch.randn(50, 16, 20).log_softmax(2).requires_grad_()
    targets         = torch.randint(1, 20, (16, 30), dtype=torch.long)
    input_lengths   = torch.full((16,), 50, dtype=torch.long)
    target_lengths  = torch.randint(10, 30, (16,), dtype=torch.long)
    loss            = ctc_loss(log_probs, targets, input_lengths, target_lengths)

    print(loss)


if __name__ == '__main__':
    #_test_pred_vec()

    _test_ctc_loss()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/你好赵伟/article/detail/345139
推荐阅读
相关标签
  

闽ICP备14008679号