赞
踩
利用Python代码实现中文文本的自然语言处理,包括分词、去标点符号、去停用词、词性标注&过滤。
在刚开始的每个模块,介绍它的实现。最后会将整个文本处理过程封装成 TextProcess 类。
jieba 是比较好的中文分词库,在此之前,需要 pip install jieba
结巴分词有三种模式:
jieba.cut(text, cut_all=True)
jieba.cut(text, cut_all=False) # 默认模式
jieba.cut_for_search(txt)
三种分词效果如下图所示:
想要进一步了解 jieba 三种模式,请参考 详细介绍 。因为我要做的是文本分析,所以选用的是默认的精确模式。
对于一些词,比如“吃鸡”,jieba 往往会将它们分成 “吃” 和 “鸡” ,但是又不太想让它们分开,这该怎么做呢?这时候就需要加载自定义的词典 dict.txt。建立该文档,在其中加入“吃鸡”,执行以下代码:
file_userDict = 'dict.txt' # 自定义的词典
jieba.load_userdict(file_userDict)
效果对比图:
在用 posseg 分词后,结果是一对值,包括 word 和 flag ,可以用 for 循环获取。关于汉语词性对照表,请看 词性标注表
import jieba.posseg as pseg
sentence = "酒店就在海边,去鼓浪屿很方便。"
words_pair = pseg.cut(sentence)
result = " ".join(["{0}/{1}".format(word, flag) for word, flag in words_pair])
print(result)
在此基础上,可以进一步做词性过滤,只保留特定词性的词。首先在 tag_filter 表明想要留下哪些词,接着对于词性标注后的句子中的每一个词,如果词性符合,则加入到 list 中。在这里只保留了名词和动词。
import jieba.posseg as pseg
list = []
sentence = "人们宁愿去关心一个蹩脚电影演员的吃喝拉撒和鸡毛蒜皮,而不愿了解一个普通人波涛汹涌的内心世界"
tag_filter = ['n', 'v'] # 需要保留的词性
seg_result = pseg.cut(sentence) # 结果是一个pair,有flag和word两种值
list.append([" ".join(s.word for s in seg_result if s.flag in tag_filter)])
print("词性过滤完成")
print(list)
去停用词时,首先要用到停用词表,常见的有哈工大停用词表 及 百度停用词表,在网上随便下载一个即可。
在去停用词之前,首先要通过 load_stopword( ) 方法来加载停用词列表,接着按照上文所示,加载自定义词典,对句子进行分词,然后判断分词后的句子中的每一个词,是否在停用词表内,如果不在,就把它加入 outstr,用空格来区分 。
import jieba # 加载停用词列表 def load_stopword(): f_stop = open('hit_stopwords.txt', encoding='utf-8') # 自己的中文停用词表 sw = [line.strip() for line in f_stop] # strip() 方法用于移除字符串头尾指定的字符(默认为空格) f_stop.close() return sw # 中文分词并且去停用词 def seg_word(sentence): file_userDict = 'dict.txt' # 自定义的词典 jieba.load_userdict(file_userDict) sentence_seged = jieba.cut(sentence.strip()) stopwords = load_stopword() outstr = '' for word in sentence_seged: if word not in stopwords: if word != '/t': outstr += word outstr += " " print(outstr) return outstr if __name__ == '__main__': sentence = "人们宁愿去关心一个蹩脚电影演员的吃喝拉撒和鸡毛蒜皮,而不愿了解一个普通人波涛汹涌的内心世界" seg_word(sentence)
导入 re 包,定义标点符号,使用 sub( ) 方法将之替换。
import re
sentence = "+蚂=蚁!花!呗/期?免,息★.---《平凡的世界》:了*解一(#@)个“普通人”波涛汹涌的内心世界!"
sentenceClean = []
remove_chars = '[·’!"\#$%&\'()#!()*+,-./:;<=>?\@,:?¥★、….>【】[]《》?“”‘’\[\\]^_`{|}~]+'
string = re.sub(remove_chars, "", sentence)
sentenceClean.append(string)
print(sentence)
print(sentenceClean)
最后结合上面的内容,将它们封装到一个 TextProcess 类中。 filePath 是刚开始要处理的文本位置, fileSegDonePath 是处理完毕后要保存的位置。
思路是先将要处理的文本逐行保存到一个 fileTrainRead 的列表中,然后有两种方法可供选择:
加载停用词表,对它进行分词及去停用词操作,保存到 word_list_seg 列表中;
或者也可以选择不分词及去停用词,而是直接从句子中提取需要的词性,然后保存到 word_list_pos 列表中。
由于停用词及词性过滤都对句子标点进行了去除,因此该类中不包含标点符号的去除。最后将处理好的句子写入文件中。
import jieba import jieba.posseg as pseg class TextProcess(object): def __init__(self, filePath, fileSegDonePath): self.filePath = filePath # 需要处理的文本位置 self.fileSegDonePath = fileSegDonePath # 处理完毕后的保存位置 self.fileTrainRead = [] # 所有行保存到该列表 self.stopPath = "hit_stopwords.txt" # 自己所用的停用词表位置 self.word_list_seg = [] # 分词及去停用词后保存的列表 self.word_list_pos = [] # 词性过滤后保存的列表 # 将每一行文本依次存放到一个列表 def saveLine(self): count = 0 # 统计行数 with open(self.filePath, encoding='utf-8') as fileTrainRaw: for index, line in enumerate(fileTrainRaw): self.fileTrainRead.append(line) count += 1 print("一共有%d行" % count) return self.fileTrainRead # 加载停用词表 def load_stopword(self): f_stop = open(self.stopPath, encoding='utf-8') # 自己的中文停用词表 sw = [line.strip() for line in f_stop] # strip() 方法用于移除字符串头尾指定的字符(默认为空格) f_stop.close() return sw # 分词并且去停用词,与下一个词性过滤方法选择一个即可 def segLine(self): file_userDict = 'dict.txt' # 自定义的词典 jieba.load_userdict(file_userDict) for i in range(len(self.fileTrainRead)): sentence_seged = jieba.cut(self.fileTrainRead[i].strip()) stopwords = self.load_stopword() outstr = '' for word in sentence_seged: if word not in stopwords: if word != '/t': outstr += word outstr += " " self.word_list_seg.append([outstr]) print("分词及去停用词完成") return self.word_list_seg # 保留特定词性 def posLine(self): for i in range(len(self.fileTrainRead)): tag_filter = ['n', 'd', 'a', 'v', 'f', 'ns', 'vn'] # 需要保留的词性 d-副词 f-方位词 ns-地名 vn-名动词 seg_result = pseg.cut(self.fileTrainRead[i]) # 结果是一个pair,有flag和word两种值 self.word_list_pos.append([" ".join(s.word for s in seg_result if s.flag in tag_filter)]) print("词性过滤完成") return self.word_list_pos # 处理后写入文件 def writeFile(self): with open(self.fileSegDonePath, 'wb') as fs: for i in range(len(self.word_list_seg)): # 选择去停用词方法 fs.write(self.word_list_seg[i][0].encode('utf-8')) fs.write('\n'.encode("utf-8")) ''' for i in range(len(self.word_list_pos)): # 选择词性过滤方法 fs.write(self.word_list_pos[i][0].encode('utf-8')) fs.write('\n'.encode("utf-8")) ''' if __name__ == '__main__': tp = TextProcess('ex.txt', 'final.txt') tp.saveLine() # 将每一行文本依次存放到一个列表 tp.load_stopword() # 加载停用词表 tp.segLine() # tp.posLine() tp.writeFile()
原始文本(爬取的酒店评论部分数据):
各方面条件都很好,就是住进去时没有明面窗户屋子里比较潮,后来用了除湿器。
位置特别好,出入方便,酒店前台、门童服务特别好。
就在步行街路口,位置不错。酒店服务也挺好的。
酒店各方面非常不错。“健身房”实在是短板。太影响整体形象
酒店位置很好中山路步行街口,有停车场出行很方便。
早餐品种丰富,工作人员很热情,海景房能观赏鼓浪屿夜景相当不错!
早点丰富,出行方便!
选择去停用词方法效果:
方面 条件 都 很好 住 进去 时 没有 明 面 窗户 屋子里 比较 潮 后来 除湿 器
位置 特别 好 出入 方便 酒店 前台 门童 服务 特别 好
步行街 路口 位置 不错 酒店 服务 挺 好
酒店 方面 非常 不错 健身房 实在 短板 太 影响 整体 形象
酒店 位置 很好 中山路 步行街 口 停车场 出行 很方便
早餐 品种 丰富 工作人员 很 热情 海景房 观赏 鼓浪屿 夜景 相当 不错
早点 丰富 出行 方便
选择词性过滤方法效果:
方面 条件 都 就是 住 进去 时 没有 明 面 窗户 屋子里 比较 潮 除湿 器
位置 特别 出入 方便 酒店 前台 门童 服务 特别 好
就 步行街 位置 不错 酒店 服务 也 挺好
酒店 方面 非常 不错 健身房 实在 是 短板 太 影响 整体 形象
酒店 位置 中山路 步行街 有 停车场 出行
早餐 品种 丰富 工作人员 热情 海景房 能 观赏 鼓浪屿 夜景 相当 不错
早点 丰富 出行 方便
就此结束!^o^y
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。