当前位置:   article > 正文

【论文阅读】基于深度学习的时序异常检测——Anomaly Transformer_transformer轻量化时序异常检测

transformer轻量化时序异常检测

系列文章链接
数据解读参考:数据基础:多维时序数据集简介
论文一:2022 Anomaly Transformer:异常分数预测
论文二:2022 TransAD:异常分数预测
论文三:2023 TimesNet:基于卷积的多任务模型

论文链接:Anomaly Transformer.pdf
代码链接:https://github.com/thuml/Anomaly-Transformer
视频讲解(原作者禁止转载,联系的话侵删):https://www.bilibili.com/video/BV1CN4y1A7x6/?spm_id_from=333.337.search-card.all.click&vd_source=c912801c215d811162cae4db751b0768

本文是清华大学研究生提出的一种异常检测模型,是基于transformer针对时序数据进行编码的方案,整体方案让人耳目一新。

本文的创新点总结

  1. 提出了Anomaly-Attention模块,该模块有两大亮点:
    2.1 prior-association:如下图上半部分所示,采用高斯分布去拟合样本时间点位和邻近点位的数据分布,通过调整参数 σ \sigma σ得到高斯先验分布,更注重局部数据分布, l l l层的高斯分布计算表示为: P l = R e s c a l e ( [ 1 2 π σ i e x p ( − ∣ j − i ∣ 2 2 σ i 2 ) ] i , j ∈ 1 , 2 , . . . , N ) P^l=Rescale([\frac{1}{\sqrt {2\pi\sigma_i}}exp(-\frac{|j-i|^2}{2\sigma_i^2})]_{i,j\in{1,2,...,N}}) Pl=Rescale([2πσi 1exp(2σi2ji2)]i,j1,2,...,N)
    在这里插入图片描述
    2.2 series-association:采用transformer中的注意力机制进行时序数据建模,拟合上下文点位和目标样本点位间的权重关系,用于表示点位和更大范围内的上下文数据间的关联性,更注重较大范围内的信息,如上图下半部分所示, l l l层的注意力关联计算为: S l = s o f t m a x ( Q K T d m o d e l ) S^l=softmax(\frac{QK^T}{\sqrt{d_{model}}}) Sl=softmax(dmodel QKT)正如上图右边所示,对于正常点位而言,其对应临近点高斯分布和上下文注意力分布之间差距会更大,因为正常点位与上下文时序数据间关联更大;对于异常点位而言,它和邻近点位以及上下文时序数据的关联性较小,属于比较离群的状态,因此异常点位的两种分布差异很小;可以通过这种差异性来区分正常点位和异常点位(
    声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/你好赵伟/article/detail/355971
推荐阅读
相关标签