当前位置:   article > 正文

用pytorch写transformer代码

transformer的pytorch代码

好的,这里是一份简单的PyTorch代码示例,实现了Transformer模型

``` import torch import torch.nn as nn import torch.nn.functional as F

class TransformerModel(nn.Module): def init(self, num_tokens, d_model, num_heads, num_layers, dim_feedforward): super().init() self.d_model = d_model self.token_embedding = nn.Embedding(num_tokens, d_model) self.pos_embedding = nn.Embedding(1000, d_model) self.layer_stack = nn.ModuleList([ TransformerLayer(d_model, num_heads, dim_feedforward) for _ in range(num_layers) ]) self.fc = nn.Linear(d_model, num_tokens)

  1. def forward(self, x):
  2. seq_len = x.shape[1]
  3. pos = torch.arange(seq_len, dtype=torch.long)
  4. pos = pos.unsqueeze(0).expand(x.shape[0], seq_len)
  5. x = self.token_embedding(x) + self.pos_embedding(pos)
  6. for layer in self.layer_stack:
  7. x = layer(x)
  8. x = self.fc(x)
  9. return x
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

class TransformerLayer(nn.Module): def init(self, d_model, num_heads, dim_feedforward): super().init() self.self_attn = MultiHeadAttention(d_model, num_heads) self.feed_forward = nn.Sequential( nn.Linear(d_model, dim_feedforward), nn.ReLU(), nn.Linear(dim_feedforward, d_model) ) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model)

  1. def forward(self, x):
  2. attn_output = self.self_attn(x, x, x)
  3. x = self.norm1(x + attn_output)
  4. ff_output = self.feed_forward(x)
  5. x = self.norm2(x + ff_output)
  6. return x
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

class MultiHeadAttention(nn.Module): def init(self, d_model, num_heads): super().init() self.num_heads = num_heads self.d_model = d_model self.depth = d_model // num_heads self.query_lin = nn.Linear(d_model, num_heads * self.depth) self.key_lin = nn.Linear(d_model, num_heads * self.depth) self.value_lin = nn.Linear(d_model, num_

声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:【wpsshop博客】
推荐阅读
相关标签
  

闽ICP备14008679号