赞
踩
好的,这里是一份简单的PyTorch代码示例,实现了Transformer模型:
``` import torch import torch.nn as nn import torch.nn.functional as F
class TransformerModel(nn.Module): def init(self, num_tokens, d_model, num_heads, num_layers, dim_feedforward): super().init() self.d_model = d_model self.token_embedding = nn.Embedding(num_tokens, d_model) self.pos_embedding = nn.Embedding(1000, d_model) self.layer_stack = nn.ModuleList([ TransformerLayer(d_model, num_heads, dim_feedforward) for _ in range(num_layers) ]) self.fc = nn.Linear(d_model, num_tokens)
- def forward(self, x):
- seq_len = x.shape[1]
- pos = torch.arange(seq_len, dtype=torch.long)
- pos = pos.unsqueeze(0).expand(x.shape[0], seq_len)
- x = self.token_embedding(x) + self.pos_embedding(pos)
- for layer in self.layer_stack:
- x = layer(x)
- x = self.fc(x)
- return x
class TransformerLayer(nn.Module): def init(self, d_model, num_heads, dim_feedforward): super().init() self.self_attn = MultiHeadAttention(d_model, num_heads) self.feed_forward = nn.Sequential( nn.Linear(d_model, dim_feedforward), nn.ReLU(), nn.Linear(dim_feedforward, d_model) ) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model)
- def forward(self, x):
- attn_output = self.self_attn(x, x, x)
- x = self.norm1(x + attn_output)
- ff_output = self.feed_forward(x)
- x = self.norm2(x + ff_output)
- return x
class MultiHeadAttention(nn.Module): def init(self, d_model, num_heads): super().init() self.num_heads = num_heads self.d_model = d_model self.depth = d_model // num_heads self.query_lin = nn.Linear(d_model, num_heads * self.depth) self.key_lin = nn.Linear(d_model, num_heads * self.depth) self.value_lin = nn.Linear(d_model, num_
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。