当前位置:   article > 正文

【Paper】2017_Time-varying Formation Tracking for Linear Multi-agent Systems with Multiple Leaders

【Paper】2017_Time-varying Formation Tracking for Linear Multi-agent Systems with Multiple Leaders

Dong X, Hu G. Time-varying formation tracking for linear multiagent systems with multiple leaders[J]. IEEE Transactions on Automatic Control, 2017, 62(7): 3658-3664.

Dong X, Yu B, Shi Z, et al. Time-varying formation control for unmanned aerial vehicles: Theories and applications[J]. IEEE Transactions on Control Systems Technology, 2014, 23(1): 340-348.

Dong X, Zhou Y, Ren Z, et al. Time-varying formation control for unmanned aerial vehicles with switching interaction topologies[J]. Control Engineering Practice, 2016, 46: 26-36.

Time-varying formation tracking for linear multiagent systems with multiple leaders

在这里插入图片描述

控制协议为:
u i ( t ) = K ∑ j = 1 M w i j ( ( x i ( t ) − h i ( t ) ) − ( x j ( t ) − h j ( t ) ) ) + K ∑ k = M + 1 N w i k ( ( x i ( t ) − h i ( t ) ) − x k ( t ) ) + v i ( t ) = K ∑ j = 1 M w i j ( ( x i − h i ) − ( x j − h j ) ) + K ∑ k = M + 1 N w i k ( ( x i − h i ) − x k ) + v i = K ∑ j = 1 M w i j ( δ i − δ j ) + K ∑ k = M + 1 N w i k ( δ i − x k ) + v i

ui(t)=Kj=1Mwij((xi(t)hi(t))(xj(t)hj(t)))+Kk=M+1Nwik((xi(t)hi(t))xk(t))+vi(t)=Kj=1Mwij((xihi)(xjhj))+Kk=M+1Nwik((xihi)xk)+vi=Kj=1Mwij(δiδj)+Kk=M+1Nwik(δixk)+vi
ui(t)===Kj=1Mwij((xi(t)hi(t))(xj(t)hj(t)))+Kk=M+1Nwik((xi(t)hi(t))xk(t))+vi(t)Kj=1Mwij((xihi)(xjhj))+Kk=M+1Nwik((xihi)xk)+viKj=1Mwij(δiδj)+Kk=M+1Nwik(δixk)+vi



Theorem 1

在这里插入图片描述

Theorem 2

在这里插入图片描述

Codes: TimevaryingFormation

%% Time-varying formation tracking for linear multiagent systems with multiple leaders
% Author: Zhao-Jichao
% Date: 2021-07-08
clear
clc

%% System Description
global A B L1 L2 K
A = [0  1  1
     1  2  1
    -2 -6 -3];
B = [0  1
    -1  0
     0  0];

Bbar = [0 -1  0
        1  0  0];
Btilde=[0  0  1];
delta = 0.55;
Q = eye(3);
R = eye(2);
P = care(A,B,Q,R);

L = [1 -1  0  0  0  0  0  0  0  0   0  0  0
     0  3  0  0  0  0  0  0  0  0  -1 -1 -1
    -1  0  1  0  0  0  0  0  0  0   0  0  0
     0  0 -1  1  0  0  0  0  0  0   0  0  0
     0  0  0 -1  1  0  0  0  0  0   0  0  0
     0  0  0  0  0  1 -1  0  0  0   0  0  0
     0  0  0  0  0  0  1 -1  0  0   0  0  0
     0  0  0  0  0  0 -1  5  0 -1  -1 -1 -1
     0  0  0  0  0  0  0 -1  1  0   0  0  0
     0  0  0  0  0  0  0  0 -1  1   0  0  0
     0  0  0  0  0  0  0  0  0  0   0  0  0
     0  0  0  0  0  0  0  0  0  0   0  0  0
     0  0  0  0  0  0  0  0  0  0   0  0  0];

L1 = L(1:10, 1:10);
L2 = L(1:10, 11:13);
lambda1 = min(eig(L1));
K = -delta*1/(lambda1)*inv(R)*B'*P;

% Initial states of followers
x1 = [03 05 07]';
x2 = [04 06 08]';
x3 = [05 07 09]';
x4 = [06 08 10]';
x5 = [07 09 11]';
x6 = [08 10 12]';
x7 = [09 11 13]';
x8 = [10 12 14]';
x9 = [11 13 15]';
x10= [12 14 16]';
% Initial states of leaders
x11= [13 15 17]';
x12= [14 16 18]';
x13= [15 17 19]';

XF = [x1' x2' x3' x4' x5' x6' x7' x8' x9' x10']';
XE = [x11' x12' x13']';
in = [XF' XE']';

syms t real
h1 = [15*sin(t+(1-1)*pi/5) -15*cos(t+(1-1)*pi/5) 30*cos(t+(1-1)*pi/5)]';
h2 = [15*sin(t+(2-1)*pi/5) -15*cos(t+(2-1)*pi/5) 30*cos(t+(2-1)*pi/5)]';
h3 = [15*sin(t+(3-1)*pi/5) -15*cos(t+(3-1)*pi/5) 30*cos(t+(3-1)*pi/5)]';
h4 = [15*sin(t+(4-1)*pi/5) -15*cos(t+(4-1)*pi/5) 30*cos(t+(4-1)*pi/5)]';
h5 = [15*sin(t+(5-1)*pi/5) -15*cos(t+(5-1)*pi/5) 30*cos(t+(5-1)*pi/5)]';
h6 = [15*sin(t+(6-1)*pi/5) -15*cos(t+(6-1)*pi/5) 30*cos(t+(6-1)*pi/5)]';
h7 = [15*sin(t+(7-1)*pi/5) -15*cos(t+(7-1)*pi/5) 30*cos(t+(7-1)*pi/5)]';
h8 = [15*sin(t+(8-1)*pi/5) -15*cos(t+(8-1)*pi/5) 30*cos(t+(8-1)*pi/5)]';
h9 = [15*sin(t+(9-1)*pi/5) -15*cos(t+(9-1)*pi/5) 30*cos(t+(9-1)*pi/5)]';
h10= [15*sin(t+(10-1)*pi/5) -15*cos(t+(10-1)*pi/5) 30*cos(t+(10-1)*pi/5)]';
H = [h1' h2' h3' h4' h5' h6' h7' h8' h9' h10']';

%% 
tBegin = 0;
tFinal = 100;
[t, out] = ode45(@odeFun, [tBegin, tFinal], in);

%% Draw Results
figure(1)
plot3(out(:,1), out(:,2), out(:,3), 'linewidth',1.5); hold on; grid on;
plot3(out(:,4), out(:,5), out(:,6), 'linewidth',1.5); hold on; grid on;
plot3(out(:,7), out(:,8), out(:,9), 'linewidth',1.5); hold on; grid on;
plot3(out(:,10),out(:,11),out(:,12), 'linewidth',1.5); hold on; grid on;
plot3(out(:,13),out(:,14),out(:,15), 'linewidth',1.5); hold on; grid on;
plot3(out(:,16),out(:,17),out(:,18), 'linewidth',1.5); hold on; grid on;
plot3(out(:,19),out(:,20),out(:,21), 'linewidth',1.5); hold on; grid on;
plot3(out(:,22),out(:,23),out(:,24), 'linewidth',1.5); hold on; grid on;
plot3(out(:,25),out(:,26),out(:,27), 'linewidth',1.5); hold on; grid on;
plot3(out(:,28),out(:,29),out(:,30), 'linewidth',1.5); hold on; grid on;
plot3(out(:,31),out(:,32),out(:,33), 'linewidth',1.5); hold on; grid on;
plot3(out(:,34),out(:,35),out(:,36), 'linewidth',1.5); hold on; grid on;
plot3(out(:,37),out(:,38),out(:,39), 'linewidth',1.5); hold on; grid on;
legend('f1','f2','f3','f4','f5','f6','f7','f8','f9','f10','l11','l12','l13')
figure(2)   % Plot snapshots
t = 1000;
scatter3(out(t,1), out(t,2), out(t,3), '*', 'linewidth',1.5); hold on; grid on;
scatter3(out(t,4), out(t,5), out(t,6), '*', 'linewidth',1.5); hold on; grid on;
scatter3(out(t,7), out(t,8), out(t,9), '*', 'linewidth',1.5); hold on; grid on;
scatter3(out(t,10),out(t,11),out(t,12),'o', 'linewidth',1.5); hold on; grid on;
scatter3(out(t,13),out(t,14),out(t,15),'o', 'linewidth',1.5); hold on; grid on;
scatter3(out(t,16),out(t,17),out(t,18),'d', 'linewidth',1.5); hold on; grid on;
scatter3(out(t,19),out(t,20),out(t,21),'d', 'linewidth',1.5); hold on; grid on;
scatter3(out(t,22),out(t,23),out(t,24),'d', 'linewidth',1.5); hold on; grid on;
scatter3(out(t,25),out(t,26),out(t,27),'^', 'linewidth',1.5); hold on; grid on;
scatter3(out(t,28),out(t,29),out(t,30),'^', 'linewidth',1.5); hold on; grid on;
scatter3(out(t,31),out(t,32),out(t,33),'p', 'linewidth',1.5); hold on; grid on;
scatter3(out(t,34),out(t,35),out(t,36),'p', 'linewidth',1.5); hold on; grid on;
scatter3(out(t,37),out(t,38),out(t,39),'p', 'linewidth',1.5); hold on; grid on;
legend('f1','f2','f3','f4','f5','f6','f7','f8','f9','f10','l11','l12','l13')
%% 
function out = odeFun(t, in)
    global A B L1 L2 K
    XF = in(1:30,:);
    XE = in(31:39,:);
    h1 = [15*sin(t+(1-1)*pi/5) -15*cos(t+(1-1)*pi/5) 30*cos(t+(1-1)*pi/5)]';
    h2 = [15*sin(t+(2-1)*pi/5) -15*cos(t+(2-1)*pi/5) 30*cos(t+(2-1)*pi/5)]';
    h3 = [15*sin(t+(3-1)*pi/5) -15*cos(t+(3-1)*pi/5) 30*cos(t+(3-1)*pi/5)]';
    h4 = [15*sin(t+(4-1)*pi/5) -15*cos(t+(4-1)*pi/5) 30*cos(t+(4-1)*pi/5)]';
    h5 = [15*sin(t+(5-1)*pi/5) -15*cos(t+(5-1)*pi/5) 30*cos(t+(5-1)*pi/5)]';
    h6 = [15*sin(t+(6-1)*pi/5) -15*cos(t+(6-1)*pi/5) 30*cos(t+(6-1)*pi/5)]';
    h7 = [15*sin(t+(7-1)*pi/5) -15*cos(t+(7-1)*pi/5) 30*cos(t+(7-1)*pi/5)]';
    h8 = [15*sin(t+(8-1)*pi/5) -15*cos(t+(8-1)*pi/5) 30*cos(t+(8-1)*pi/5)]';
    h9 = [15*sin(t+(9-1)*pi/5) -15*cos(t+(9-1)*pi/5) 30*cos(t+(9-1)*pi/5)]';
    h10= [15*sin(t+(10-1)*pi/5) -15*cos(t+(10-1)*pi/5) 30*cos(t+(10-1)*pi/5)]';
    H = [h1' h2' h3' h4' h5' h6' h7' h8' h9' h10']';
    
    dXE = kron(eye(3),A)*XE;
    U = kron(L1,eye(2))*kron(eye(10),K)*(XF-H)...
      + kron(L2,eye(2))*kron(eye(3),K)*XE;
    dXF = kron(eye(10),A)*XF + kron(eye(10),B)*U;    
    out = [dXF; dXE];
end
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135

Codes: TimevaryingFormation2

%% Time-varying formation tracking for linear multiagent systems with multiple leaders
% Author: Zhao-Jichao
% Date: 2021-07-08
clear
clc

%% System Description
global A B L1 L2 K
A = [0  1  1
     1  2  1
    -2 -6 -3];
B = [0  1
    -1  0
     0  0];

Bbar = [0 -1  0
        1  0  0];
Btilde=[0  0  1];
delta = 0.55;
Q = eye(3);
R = eye(2);
P = care(A,B,Q,R);

L = [1 -1  0  0  0  0  0  0  0  0   0  0  0
     0  3  0  0  0  0  0  0  0  0  -1 -1 -1
    -1  0  1  0  0  0  0  0  0  0   0  0  0
     0  0 -1  1  0  0  0  0  0  0   0  0  0
     0  0  0 -1  1  0  0  0  0  0   0  0  0
     0  0  0  0  0  1 -1  0  0  0   0  0  0
     0  0  0  0  0  0  1 -1  0  0   0  0  0
     0  0  0  0  0  0 -1  5  0 -1  -1 -1 -1
     0  0  0  0  0  0  0 -1  1  0   0  0  0
     0  0  0  0  0  0  0  0 -1  1   0  0  0
     0  0  0  0  0  0  0  0  0  0   0  0  0
     0  0  0  0  0  0  0  0  0  0   0  0  0
     0  0  0  0  0  0  0  0  0  0   0  0  0];

L1 = L(1:10, 1:10);
L2 = L(1:10, 11:13);
lambda1 = min(eig(L1));
K = -delta*1/(lambda1)*inv(R)*B'*P;

% Initial states of followers
x1 = [03 05 07]';
x2 = [04 06 08]';
x3 = [05 07 09]';
x4 = [06 08 10]';
x5 = [07 09 11]';
x6 = [08 10 12]';
x7 = [09 11 13]';
x8 = [10 12 14]';
x9 = [11 13 15]';
x10= [12 14 16]';
% Initial states of leaders
x11= [13 15 17]';
x12= [14 16 18]';
x13= [15 17 19]';

XF = [x1' x2' x3' x4' x5' x6' x7' x8' x9' x10']';
XE = [x11' x12' x13']';
in = [XF' XE']';

syms t real
h1 = [15*sin(t+(1-1)*pi/5) -15*cos(t+(1-1)*pi/5) 30*cos(t+(1-1)*pi/5)]';
h2 = [15*sin(t+(2-1)*pi/5) -15*cos(t+(2-1)*pi/5) 30*cos(t+(2-1)*pi/5)]';
h3 = [15*sin(t+(3-1)*pi/5) -15*cos(t+(3-1)*pi/5) 30*cos(t+(3-1)*pi/5)]';
h4 = [15*sin(t+(4-1)*pi/5) -15*cos(t+(4-1)*pi/5) 30*cos(t+(4-1)*pi/5)]';
h5 = [15*sin(t+(5-1)*pi/5) -15*cos(t+(5-1)*pi/5) 30*cos(t+(5-1)*pi/5)]';
h6 = [15*sin(t+(6-1)*pi/5) -15*cos(t+(6-1)*pi/5) 30*cos(t+(6-1)*pi/5)]';
h7 = [15*sin(t+(7-1)*pi/5) -15*cos(t+(7-1)*pi/5) 30*cos(t+(7-1)*pi/5)]';
h8 = [15*sin(t+(8-1)*pi/5) -15*cos(t+(8-1)*pi/5) 30*cos(t+(8-1)*pi/5)]';
h9 = [15*sin(t+(9-1)*pi/5) -15*cos(t+(9-1)*pi/5) 30*cos(t+(9-1)*pi/5)]';
h10= [15*sin(t+(10-1)*pi/5) -15*cos(t+(10-1)*pi/5) 30*cos(t+(10-1)*pi/5)]';
H = [h1' h2' h3' h4' h5' h6' h7' h8' h9' h10']';

%% 
tBegin = 0;
tFinal = 100;
[t, out] = ode45(@odeFun, [tBegin, tFinal], in);

%% Draw Results
% figure(1)
% plot3(out(:,1), out(:,2), out(:,3), 'linewidth',1.5); hold on; grid on;
% plot3(out(:,4), out(:,5), out(:,6), 'linewidth',1.5); hold on; grid on;
% plot3(out(:,7), out(:,8), out(:,9), 'linewidth',1.5); hold on; grid on;
% plot3(out(:,10),out(:,11),out(:,12), 'linewidth',1.5); hold on; grid on;
% plot3(out(:,13),out(:,14),out(:,15), 'linewidth',1.5); hold on; grid on;
% plot3(out(:,16),out(:,17),out(:,18), 'linewidth',1.5); hold on; grid on;
% plot3(out(:,19),out(:,20),out(:,21), 'linewidth',1.5); hold on; grid on;
% plot3(out(:,22),out(:,23),out(:,24), 'linewidth',1.5); hold on; grid on;
% plot3(out(:,25),out(:,26),out(:,27), 'linewidth',1.5); hold on; grid on;
% plot3(out(:,28),out(:,29),out(:,30), 'linewidth',1.5); hold on; grid on;
% plot3(out(:,31),out(:,32),out(:,33), 'linewidth',1.5); hold on; grid on;
% plot3(out(:,34),out(:,35),out(:,36), 'linewidth',1.5); hold on; grid on;
% plot3(out(:,37),out(:,38),out(:,39), 'linewidth',1.5); hold on; grid on;
% legend('f1','f2','f3','f4','f5','f6','f7','f8','f9','f10','l11','l12','l13')
% figure(2)   % Plot snapshots
% t = 1000;
% scatter3(out(t,1), out(t,2), out(t,3), '*', 'linewidth',1.5); hold on; grid on;
% scatter3(out(t,4), out(t,5), out(t,6), '*', 'linewidth',1.5); hold on; grid on;
% scatter3(out(t,7), out(t,8), out(t,9), '*', 'linewidth',1.5); hold on; grid on;
% scatter3(out(t,10),out(t,11),out(t,12),'o', 'linewidth',1.5); hold on; grid on;
% scatter3(out(t,13),out(t,14),out(t,15),'o', 'linewidth',1.5); hold on; grid on;
% scatter3(out(t,16),out(t,17),out(t,18),'d', 'linewidth',1.5); hold on; grid on;
% scatter3(out(t,19),out(t,20),out(t,21),'d', 'linewidth',1.5); hold on; grid on;
% scatter3(out(t,22),out(t,23),out(t,24),'d', 'linewidth',1.5); hold on; grid on;
% scatter3(out(t,25),out(t,26),out(t,27),'^', 'linewidth',1.5); hold on; grid on;
% scatter3(out(t,28),out(t,29),out(t,30),'^', 'linewidth',1.5); hold on; grid on;
% scatter3(out(t,31),out(t,32),out(t,33),'p', 'linewidth',1.5); hold on; grid on;
% scatter3(out(t,34),out(t,35),out(t,36),'p', 'linewidth',1.5); hold on; grid on;
% scatter3(out(t,37),out(t,38),out(t,39),'p', 'linewidth',1.5); hold on; grid on;
% legend('f1','f2','f3','f4','f5','f6','f7','f8','f9','f10','l11','l12','l13')

figure(3)
for time = 1:1:length(t)-00
    out1 = [out(:,1) out(:,4) out(:,7) out(:,10) out(:,13) out(:,16) out(:,19) out(:,22) out(:,25) out(:,28) out(:,31) out(:,34) out(:,37)];
    out2 = [out(:,2) out(:,5) out(:,8) out(:,11) out(:,14) out(:,17) out(:,20) out(:,23) out(:,26) out(:,29) out(:,32) out(:,35) out(:,38)];
    out3 = [out(:,3) out(:,6) out(:,9) out(:,12) out(:,15) out(:,18) out(:,21) out(:,24) out(:,27) out(:,30) out(:,33) out(:,36) out(:,39)];
    scatter3(out3(time,:), out2(time,:), out1(time,:), 'linewidth',1.5);
    axis([-300, 300, -100,100, -100,100]);
    tt = kron(ones(1,size(out1,2)),t);
    pause(0.1)
end
disp('end')

%% 
function out = odeFun(t, in)
    global A B L1 L2 K
    XF = in(1:30,:);
    XE = in(31:39,:);
    h1 = [15*sin(t+(1-1)*pi/5) -15*cos(t+(1-1)*pi/5) 30*cos(t+(1-1)*pi/5)]';
    h2 = [15*sin(t+(2-1)*pi/5) -15*cos(t+(2-1)*pi/5) 30*cos(t+(2-1)*pi/5)]';
    h3 = [15*sin(t+(3-1)*pi/5) -15*cos(t+(3-1)*pi/5) 30*cos(t+(3-1)*pi/5)]';
    h4 = [15*sin(t+(4-1)*pi/5) -15*cos(t+(4-1)*pi/5) 30*cos(t+(4-1)*pi/5)]';
    h5 = [15*sin(t+(5-1)*pi/5) -15*cos(t+(5-1)*pi/5) 30*cos(t+(5-1)*pi/5)]';
    h6 = [15*sin(t+(6-1)*pi/5) -15*cos(t+(6-1)*pi/5) 30*cos(t+(6-1)*pi/5)]';
    h7 = [15*sin(t+(7-1)*pi/5) -15*cos(t+(7-1)*pi/5) 30*cos(t+(7-1)*pi/5)]';
    h8 = [15*sin(t+(8-1)*pi/5) -15*cos(t+(8-1)*pi/5) 30*cos(t+(8-1)*pi/5)]';
    h9 = [15*sin(t+(9-1)*pi/5) -15*cos(t+(9-1)*pi/5) 30*cos(t+(9-1)*pi/5)]';
    h10= [15*sin(t+(10-1)*pi/5) -15*cos(t+(10-1)*pi/5) 30*cos(t+(10-1)*pi/5)]';
    H = [h1' h2' h3' h4' h5' h6' h7' h8' h9' h10']';
    
    dXE = kron(eye(3),A)*XE;
    U = kron(L1,eye(2))*kron(eye(10),K)*(XF-H)...
      + kron(L2,eye(2))*kron(eye(3),K)*XE;
    dXF = kron(eye(10),A)*XF + kron(eye(10),B)*U;    
    out = [dXF; dXE];
end
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述


在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/你好赵伟/article/detail/371273
推荐阅读
相关标签
  

闽ICP备14008679号