当前位置:   article > 正文

如何使用 LangChain 的输出解析器驯服语言模型输出_langchain pydantic

langchain pydantic

介绍

我一直在使用 Langchain 的输出解析器来构造语言模型的输出。我发现它是一个有用的工具,因为它允许我以我想要的格式获得输出。

在本文中,我将分享我使用输出解析器的经验,讨论我如何使用它来构建不同语言模型的输出,并分享我发现的一些好处。

我希望本文对任何有兴趣使用输出解析器的人有所帮助。

以下是使用输出解析器的一些好处:

它有助于使语言模型的输出更加结构化且更易于理解。
它可用于获取更多结构化信息,而不仅仅是返回文本。
它可以定制以满足特定应用程序的特定需求。

在实践中

假设我们想使用 LLM 使用 Go Lang 创建一个简单的 TODO Web API 服务器。

首先,我们将定义输出结构。在本例中,它是一个具有“souce_code”内容和文件名的“SourceCode”类。

from pydantic import BaseModel, Field, validator

class SourceCode(BaseModel):
    source_code: str = Field(description="The current source code")
    file_name: str = Field(description="The file name with extension for this code")

parser = PydanticOutputParser(pydantic_object=SourceCode)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

然后我们准备提示询问chatgpt

from langchain.prompts import PromptTemplate

prompt = PromptTemplate(
    te
  • 1
  • 2
  • 3
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/你好赵伟/article/detail/378168?site
推荐阅读
相关标签
  

闽ICP备14008679号