赞
踩
系统启动:完成了该系统在启动过程中的配置(bootloader),将进入保护模式后堆栈的起点设在0x7c00地址处,并且引导进入kernel程序
xv6操作系统过程和x86上的其他操作系统启动过程类似,先从主板上的BIOS代码开始,再转入启动扇区代码,然后转入内核启动代码,最后创建init以及shell进程
BIOS的主要功能
p72页
(1)实模式代码
(2)保护模式代码
(3)call bootmain
#include "asm.h" #include "memlayout.h" #include "mmu.h" # Start the first CPU: switch to 32-bit protected mode, jump into C. # The BIOS loads this code from the first sector of the hard disk into # memory at physical address 0x7c00 and starts executing in real mode # with %cs=0 %ip=7c00. .code16 # Assemble for 16-bit mode .globl start start: cli # BIOS enabled interrupts; disable // 关中断 # Zero data segment registers DS, ES, and SS. // 四个段寄存器清0 xorw %ax,%ax # Set %ax to zero movw %ax,%ds # -> Data Segment movw %ax,%es # -> Extra Segment movw %ax,%ss # -> Stack Segment # Physical address line A20 is tied to zero so that the first PCs # with 2 MB would run software that assumed 1 MB. Undo that. seta20.1: inb $0x64,%al # Wait for not busy testb $0x2,%al jnz seta20.1 movb $0xd1,%al # 0xd1 -> port 0x64 outb %al,$0x64 seta20.2: inb $0x64,%al # Wait for not busy testb $0x2,%al jnz seta20.2 movb $0xdf,%al # 0xdf -> port 0x60 outb %al,$0x60 # Switch from real to protected mode. Use a bootstrap GDT that makes # virtual addresses map directly to physical addresses so that the # effective memory map doesn't change during the transition. lgdt gdtdesc // 为进入保护模式作准备 设置全局段描述符表 movl %cr0, %eax orl $CR0_PE, %eax movl %eax, %cr0 //PAGEBREAK! # Complete the transition to 32-bit protected mode by using a long jmp # to reload %cs and %eip. The segment descriptors are set up with no # translation, so that the mapping is still the identity mapping. ljmp $(SEG_KCODE<<3), $start32 .code32 # Tell assembler to generate 32-bit code now. start32: # Set up the protected-mode data segment registers // 设置各个段的索引 movw $(SEG_KDATA<<3), %ax # Our data segment selector movw %ax, %ds # -> DS: Data Segment movw %ax, %es # -> ES: Extra Segment movw %ax, %ss # -> SS: Stack Segment movw $0, %ax # Zero segments not ready for use movw %ax, %fs # -> FS movw %ax, %gs # -> GS # Set up the stack pointer and call into C. // 设置堆栈指针 0x7c00 ~ 0x7d00 movl $start, %esp call bootmain # If bootmain returns (it shouldn't), trigger a Bochs # breakpoint if running under Bochs, then loop. movw $0x8a00, %ax # 0x8a00 -> port 0x8a00 movw %ax, %dx outw %ax, %dx movw $0x8ae0, %ax # 0x8ae0 -> port 0x8a00 outw %ax, %dx spin: jmp spin # Bootstrap GDT .p2align 2 # force 4 byte alignment gdt: SEG_NULLASM # null seg SEG_ASM(STA_X|STA_R, 0x0, 0xffffffff) # code seg SEG_ASM(STA_W, 0x0, 0xffffffff) # data seg gdtdesc: .word (gdtdesc - gdt - 1) # sizeof(gdt) - 1 .long gdt # address gdt
P83页
(1)将xv6的kernel文件读到内存
// Boot loader. // // Part of the boot block, along with bootasm.S, which calls bootmain(). // bootasm.S has put the processor into protected 32-bit mode. // bootmain() loads an ELF kernel image from the disk starting at // sector 1 and then jumps to the kernel entry routine. #include "types.h" #include "elf.h" #include "x86.h" #include "memlayout.h" #define SECTSIZE 512 void readseg(uchar*, uint, uint); void bootmain(void) { struct elfhdr *elf; struct proghdr *ph, *eph; void (*entry)(void); uchar* pa; elf = (struct elfhdr*)0x10000; // scratch space // Read 1st page off disk readseg((uchar*)elf, 4096, 0); // Is this an ELF executable? if(elf->magic != ELF_MAGIC) return; // let bootasm.S handle error // Load each program segment (ignores ph flags). ph = (struct proghdr*)((uchar*)elf + elf->phoff); eph = ph + elf->phnum; for(; ph < eph; ph++){ pa = (uchar*)ph->paddr; readseg(pa, ph->filesz, ph->off); if(ph->memsz > ph->filesz) stosb(pa + ph->filesz, 0, ph->memsz - ph->filesz); } // Call the entry point from the ELF header. // Does not return! entry = (void(*)(void))(elf->entry); entry(); } void waitdisk(void) { // Wait for disk ready. while((inb(0x1F7) & 0xC0) != 0x40) ; } // Read a single sector at offset into dst. void readsect(void *dst, uint offset) { // Issue command. waitdisk(); outb(0x1F2, 1); // count = 1 outb(0x1F3, offset); outb(0x1F4, offset >> 8); outb(0x1F5, offset >> 16); outb(0x1F6, (offset >> 24) | 0xE0); outb(0x1F7, 0x20); // cmd 0x20 - read sectors // Read data. waitdisk(); insl(0x1F0, dst, SECTSIZE/4); } // Read 'count' bytes at 'offset' from kernel into physical address 'pa'. // Might copy more than asked. void readseg(uchar* pa, uint count, uint offset) { uchar* epa; epa = pa + count; // Round down to sector boundary. pa -= offset % SECTSIZE; // Translate from bytes to sectors; kernel starts at sector 1. offset = (offset / SECTSIZE) + 1; // If this is too slow, we could read lots of sectors at a time. // We'd write more to memory than asked, but it doesn't matter -- // we load in increasing order. for(; pa < epa; pa += SECTSIZE, offset++) readsect(pa, offset); }
# The xv6 kernel starts executing in this file. This file is linked with # the kernel C code, so it can refer to kernel symbols such as main(). # The boot block (bootasm.S and bootmain.c) jumps to entry below. # Multiboot header, for multiboot boot loaders like GNU Grub. # http://www.gnu.org/software/grub/manual/multiboot/multiboot.html # # Using GRUB 2, you can boot xv6 from a file stored in a # Linux file system by copying kernel or kernelmemfs to /boot # and then adding this menu entry: # # menuentry "xv6" { # insmod ext2 # set root='(hd0,msdos1)' # set kernel='/boot/kernel' # echo "Loading ${kernel}..." # multiboot ${kernel} ${kernel} # boot # } #include "asm.h" #include "memlayout.h" #include "mmu.h" #include "param.h" # Multiboot header. Data to direct multiboot loader. .p2align 2 .text .globl multiboot_header multiboot_header: #define magic 0x1badb002 #define flags 0 .long magic .long flags .long (-magic-flags) # By convention, the _start symbol specifies the ELF entry point. # Since we haven't set up virtual memory yet, our entry point is # the physical address of 'entry'. .globl _start _start = V2P_WO(entry) # Entering xv6 on boot processor, with paging off. .globl entry entry: # Turn on page size extension for 4Mbyte pages movl %cr4, %eax orl $(CR4_PSE), %eax movl %eax, %cr4 # Set page directory movl $(V2P_WO(entrypgdir)), %eax movl %eax, %cr3 # Turn on paging. movl %cr0, %eax orl $(CR0_PG|CR0_WP), %eax movl %eax, %cr0 # Set up the stack pointer. movl $(stack + KSTACKSIZE), %esp # Jump to main(), and switch to executing at # high addresses. The indirect call is needed because # the assembler produces a PC-relative instruction # for a direct jump. mov $main, %eax jmp *%eax .comm stack, KSTACKSIZE
int main(void) { kinit1(end, P2V(4*1024*1024)); // phys page allocator kvmalloc(); // kernel page table mpinit(); // detect other processors lapicinit(); // interrupt controller seginit(); // segment descriptors cprintf("\ncpu%d: starting xv6\n\n", cpunum()); picinit(); // another interrupt controller ioapicinit(); // another interrupt controller consoleinit(); // console hardware uartinit(); // serial port pinit(); // process table tvinit(); // trap vectors binit(); // buffer cache fileinit(); // file table ideinit(); // disk if(!ismp) timerinit(); // uniprocessor timer startothers(); // start other processors kinit2(P2V(4*1024*1024), P2V(PHYSTOP)); // must come after startothers() initsem(); sharememinit(); // shminit //这里添加初始化 userinit(); // first user process mpmain(); // finish this processor's setup }
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。