当前位置:   article > 正文

社区发现之标签传播算法(LPA)_社区检测算法 标签传播

社区检测算法 标签传播

在Graph领域,社区发现(Community detection)是一个非常热门且广泛的话题,后面会写一个系列,该问题实际上是从子图分割的问题演变而来,在真实的社交网络中,有些用户之间连接非常紧密,有些用户之间的连接较为稀疏,连接紧密的用户群体可以看做一个社区,在风控问题中,可以简单的理解为团伙挖掘。

目前的社区发现问题分为两大类:非重叠社区发现和重叠社区发现。非重叠社区发现问题描述的是:一个网络中,每个节点均只能属于同一个社区,这意味这社区和社区之间是没有交集的。在非重叠社区发现算法中,有不同种类的解法:

1)基于模块度的社区发现算法:基本思想是通过定义模块度(Modularity)来衡量一个社区的划分是不是相对比较好的结果,从而将社区发现问题转化为最大化模块度的问题进行求解,后续的Louvain算法会讲到。

2)基于标签传播的社区发现算法:基本思想是通过标记节点的标签信息来更新未标记节点的标签信息,在整个网络中进行传播,直至收敛,其中最具代表性的就是标签传播算法(LPA,Label Propagation Algorithm),也是本文要讨论的算法。

注意:在团伙挖掘的实际应用的过程中,不要寄希望于优化社区发现算法提高准确性,可能永远都解决不了问题,因为关系的形成在实际中太过于复杂,我们更多的关注构图关系的筛选、清洗、提纯,以及分群后进一步加工处理

一、LPA概述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/你好赵伟/article/detail/394896
推荐阅读
相关标签
  

闽ICP备14008679号