赞
踩
目录
记录一下流程,方便下次再用
- sudo apt-get install git cmake
- sudo apt-get install -y gfortran
- sudo apt-get install -y libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler
- sudo apt-get install --no-install-recommends libboost-all-dev
- sudo apt-get install -y libgflags-dev libgoogle-glog-dev liblmdb-dev libatlas-base-dev
- $ git clone https://gitee.com/Tencent/ncnn.git
- cd ncnn
- mkdir build
- cd build
- cmake ..
- make -j4
- make install
完成后ncnn文件夹如下
https://gitee.com/seaflyren/YOLOv5-Lite
下载后的文件如图所示
pip install -r requirements.txt
data文件夹下新建mydata.yaml,复制coco.yaml内容并粘贴
根据自己的数据集修改类别数nc和类名classname以及训练集和验证集路径
修改模型yaml文件中的nc数,和mydata.yaml保持一致
以lite-e为例,打开终端输入命令
python train.py --weights '预训练权重路径/v5lite-e.pt' --data 'data/mydata.yaml' --cfg 'models/v5lite-e.yaml' --epoch 300 --batch-size 16 --adam
python export.py --weights 'weights/last.pt' --batch-size 1 --img_size 320
使用onnx-simplifier对转换后的onnx进行简化
- pip install onnxsimplifier
- python -m onnxsim last.onnx e.onnx
- cd ncnn/build
- ./tools/onnx/onnx2ncnn e.onnx e.param e.bin
- # 模型优化为fp16
- ./tools/onnxoptimize e.param e.bin eopt.param eopt.bin 65536
- cd ncnn/examples
- touch yolov5_lite.cpp
将下面的代码复制到cpp文件中
- // Tencent is pleased to support the open source community by making ncnn available.
- //
- // Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved.
- //
- // Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
- // in compliance with the License. You may obtain a copy of the License at
- //
- // https://opensource.org/licenses/BSD-3-Clause
- //
- // Unless required by applicable law or agreed to in writing, software distributed
- // under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
- // CONDITIONS OF ANY KIND, either express or implied. See the License for the
- // specific language governing permissions and limitations under the License.
-
- #include "layer.h"
- #include "net.h"
-
- #if defined(USE_NCNN_SIMPLEOCV)
- #include "simpleocv.h"
- #else
- #include <opencv2/core/core.hpp>
- #include <opencv2/highgui/highgui.hpp>
- #include <opencv2/imgproc/imgproc.hpp>
- #endif
- #include <float.h>
- #include <stdio.h>
- #include <vector>
- #include <sys/time.h>
-
- // 0 : FP16
- // 1 : INT8
- #define USE_INT8 0
-
- // 0 : Image
- // 1 : Camera
- #define USE_CAMERA 1
-
- struct Object
- {
- cv::Rect_<float> rect;
- int label;
- float prob;
- };
-
- static inline float intersection_area(const Object& a, const Object& b)
- {
- cv::Rect_<float> inter = a.rect & b.rect;
- return inter.area();
- }
-
- static void qsort_descent_inplace(std::vector<Object>& faceobjects, int left, int right)
- {
- int i = left;
- int j = right;
- float p = faceobjects[(left + right) / 2].prob;
-
- while (i <= j)
- {
- while (faceobjects[i].prob > p)
- i++;
-
- while (faceobjects[j].prob < p)
- j--;
-
- if (i <= j)
- {
- // swap
- std::swap(faceobjects[i], faceobjects[j]);
-
- i++;
- j--;
- }
- }
-
- #pragma omp parallel sections
- {
- #pragma omp section
- {
- if (left < j) qsort_descent_inplace(faceobjects, left, j);
- }
- #pragma omp section
- {
- if (i < right) qsort_descent_inplace(faceobjects, i, right);
- }
- }
- }
-
- static void qsort_descent_inplace(std::vector<Object>& faceobjects)
- {
- if (faceobjects.empty())
- return;
-
- qsort_descent_inplace(faceobjects, 0, faceobjects.size() - 1);
- }
-
- static void nms_sorted_bboxes(const std::vector<Object>& faceobjects, std::vector<int>& picked, float nms_threshold)
- {
- picked.clear();
-
- const int n = faceobjects.size();
-
- std::vector<float> areas(n);
- for (int i = 0; i < n; i++)
- {
- areas[i] = faceobjects[i].rect.area();
- }
-
- for (int i = 0; i < n; i++)
- {
- const Object& a = faceobjects[i];
-
- int keep = 1;
- for (int j = 0; j < (int)picked.size(); j++)
- {
- const Object& b = faceobjects[picked[j]];
-
- // intersection over union
- float inter_area = intersection_area(a, b);
- float union_area = areas[i] + areas[picked[j]] - inter_area;
- // float IoU = inter_area / union_area
- if (inter_area / union_area > nms_threshold)
- keep = 0;
- }
-
- if (keep)
- picked.push_back(i);
- }
- }
-
- static inline float sigmoid(float x)
- {
- return static_cast<float>(1.f / (1.f + exp(-x)));
- }
-
- // unsigmoid
- static inline float unsigmoid(float y) {
- return static_cast<float>(-1.0 * (log((1.0 / y) - 1.0)));
- }
-
- static void generate_proposals(const ncnn::Mat &anchors, int stride, const ncnn::Mat &in_pad,
- const ncnn::Mat &feat_blob, float prob_threshold,
- std::vector <Object> &objects) {
- const int num_grid = feat_blob.h;
- float unsig_pro = 0;
- if (prob_threshold > 0.6)
- unsig_pro = unsigmoid(prob_threshold);
-
- int num_grid_x;
- int num_grid_y;
- if (in_pad.w > in_pad.h) {
- num_grid_x = in_pad.w / stride;
- num_grid_y = num_grid / num_grid_x;
- } else {
- num_grid_y = in_pad.h / stride;
- num_grid_x = num_grid / num_grid_y;
- }
-
- const int num_class = feat_blob.w - 5;
-
- const int num_anchors = anchors.w / 2;
-
- for (int q = 0; q < num_anchors; q++) {
- const float anchor_w = anchors[q * 2];
- const float anchor_h = anchors[q * 2 + 1];
-
- const ncnn::Mat feat = feat_blob.channel(q);
-
- for (int i = 0; i < num_grid_y; i++) {
- for (int j = 0; j < num_grid_x; j++) {
- const float *featptr = feat.row(i * num_grid_x + j);
-
- // find class index with max class score
- int class_index = 0;
- float class_score = -FLT_MAX;
- float box_score = featptr[4];
- if (prob_threshold > 0.6) {
- // while prob_threshold > 0.6, unsigmoid better than sigmoid
- if (box_score > unsig_pro) {
- for (int k = 0; k < num_class; k++) {
- float score = featptr[5 + k];
- if (score > class_score) {
- class_index = k;
- class_score = score;
- }
- }
-
- float confidence = sigmoid(box_score) * sigmoid(class_score);
-
- if (confidence >= prob_threshold) {
-
- float dx = sigmoid(featptr[0]);
- float dy = sigmoid(featptr[1]);
- float dw = sigmoid(featptr[2]);
- float dh = sigmoid(featptr[3]);
-
- float pb_cx = (dx * 2.f - 0.5f + j) * stride;
- float pb_cy = (dy * 2.f - 0.5f + i) * stride;
-
- float pb_w = pow(dw * 2.f, 2) * anchor_w;
- float pb_h = pow(dh * 2.f, 2) * anchor_h;
-
- float x0 = pb_cx - pb_w * 0.5f;
- float y0 = pb_cy - pb_h * 0.5f;
- float x1 = pb_cx + pb_w * 0.5f;
- float y1 = pb_cy + pb_h * 0.5f;
-
- Object obj;
- obj.rect.x = x0;
- obj.rect.y = y0;
- obj.rect.width = x1 - x0;
- obj.rect.height = y1 - y0;
- obj.label = class_index;
- obj.prob = confidence;
-
- objects.push_back(obj);
- }
- } else {
- for (int k = 0; k < num_class; k++) {
- float score = featptr[5 + k];
- if (score > class_score) {
- class_index = k;
- class_score = score;
- }
- }
- float confidence = sigmoid(box_score) * sigmoid(class_score);
-
- if (confidence >= prob_threshold) {
- float dx = sigmoid(featptr[0]);
- float dy = sigmoid(featptr[1]);
- float dw = sigmoid(featptr[2]);
- float dh = sigmoid(featptr[3]);
-
- float pb_cx = (dx * 2.f - 0.5f + j) * stride;
- float pb_cy = (dy * 2.f - 0.5f + i) * stride;
-
- float pb_w = pow(dw * 2.f, 2) * anchor_w;
- float pb_h = pow(dh * 2.f, 2) * anchor_h;
-
- float x0 = pb_cx - pb_w * 0.5f;
- float y0 = pb_cy - pb_h * 0.5f;
- float x1 = pb_cx + pb_w * 0.5f;
- float y1 = pb_cy + pb_h * 0.5f;
-
- Object obj;
- obj.rect.x = x0;
- obj.rect.y = y0;
- obj.rect.width = x1 - x0;
- obj.rect.height = y1 - y0;
- obj.label = class_index;
- obj.prob = confidence;
-
- objects.push_back(obj);
- }
- }
- }
- }
- }
- }
- }
-
- static int detect_yolov5(const cv::Mat& bgr, std::vector<Object>& objects)
- {
- ncnn::Net yolov5;
-
- #if USE_INT8
- yolov5.opt.use_int8_inference=true;
- #else
- yolov5.opt.use_vulkan_compute = true;
- yolov5.opt.use_bf16_storage = true;
- #endif
-
- // original pretrained model from https://github.com/ultralytics/yolov5
- // the ncnn model https://github.com/nihui/ncnn-assets/tree/master/models
-
- #if USE_INT8
- yolov5.load_param("/home/corvin/Mask/weights/e.param");
- yolov5.load_model("/home/corvin/Mask/weights/e.bin");
- #else
- yolov5.load_param("/home/corvin/Mask/weights/eopt.param");
- yolov5.load_model("/home/corvin/Mask/weights/eopt.bin");
- #endif
-
- const int target_size = 320;
- const float prob_threshold = 0.60f;
- const float nms_threshold = 0.60f;
-
- int img_w = bgr.cols;
- int img_h = bgr.rows;
-
- // letterbox pad to multiple of 32
- int w = img_w;
- int h = img_h;
- float scale = 1.f;
- if (w > h)
- {
- scale = (float)target_size / w;
- w = target_size;
- h = h * scale;
- }
- else
- {
- scale = (float)target_size / h;
- h = target_size;
- w = w * scale;
- }
-
- ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data, ncnn::Mat::PIXEL_BGR2RGB, img_w, img_h, w, h);
-
- // pad to target_size rectangle
- // yolov5/utils/datasets.py letterbox
- int wpad = (w + 31) / 32 * 32 - w;
- int hpad = (h + 31) / 32 * 32 - h;
- ncnn::Mat in_pad;
- ncnn::copy_make_border(in, in_pad, hpad / 2, hpad - hpad / 2, wpad / 2, wpad - wpad / 2, ncnn::BORDER_CONSTANT, 114.f);
-
- const float norm_vals[3] = {1 / 255.f, 1 / 255.f, 1 / 255.f};
- in_pad.substract_mean_normalize(0, norm_vals);
-
- ncnn::Extractor ex = yolov5.create_extractor();
-
- ex.input("images", in_pad);
-
- std::vector<Object> proposals;
-
- // stride 8
- {
- ncnn::Mat out;
- ex.extract("451", out);
-
- ncnn::Mat anchors(6);
- anchors[0] = 10.f;
- anchors[1] = 13.f;
- anchors[2] = 16.f;
- anchors[3] = 30.f;
- anchors[4] = 33.f;
- anchors[5] = 23.f;
-
- std::vector<Object> objects8;
- generate_proposals(anchors, 8, in_pad, out, prob_threshold, objects8);
-
- proposals.insert(proposals.end(), objects8.begin(), objects8.end());
- }
- // stride 16
- {
- ncnn::Mat out;
- ex.extract("479", out);
-
-
- ncnn::Mat anchors(6);
- anchors[0] = 30.f;
- anchors[1] = 61.f;
- anchors[2] = 62.f;
- anchors[3] = 45.f;
- anchors[4] = 59.f;
- anchors[5] = 119.f;
-
- std::vector<Object> objects16;
- generate_proposals(anchors, 16, in_pad, out, prob_threshold, objects16);
-
- proposals.insert(proposals.end(), objects16.begin(), objects16.end());
- }
- // stride 32
- {
- ncnn::Mat out;
- ex.extract("507", out);
-
-
- ncnn::Mat anchors(6);
- anchors[0] = 116.f;
- anchors[1] = 90.f;
- anchors[2] = 156.f;
- anchors[3] = 198.f;
- anchors[4] = 373.f;
- anchors[5] = 326.f;
-
- std::vector<Object> objects32;
- generate_proposals(anchors, 32, in_pad, out, prob_threshold, objects32);
-
- proposals.insert(proposals.end(), objects32.begin(), objects32.end());
- }
-
- // sort all proposals by score from highest to lowest
- qsort_descent_inplace(proposals);
-
- // apply nms with nms_threshold
- std::vector<int> picked;
- nms_sorted_bboxes(proposals, picked, nms_threshold);
-
- int count = picked.size();
-
- objects.resize(count);
- for (int i = 0; i < count; i++)
- {
- objects[i] = proposals[picked[i]];
-
- // adjust offset to original unpadded
- float x0 = (objects[i].rect.x - (wpad / 2)) / scale;
- float y0 = (objects[i].rect.y - (hpad / 2)) / scale;
- float x1 = (objects[i].rect.x + objects[i].rect.width - (wpad / 2)) / scale;
- float y1 = (objects[i].rect.y + objects[i].rect.height - (hpad / 2)) / scale;
-
- // clip
- x0 = std::max(std::min(x0, (float)(img_w - 1)), 0.f);
- y0 = std::max(std::min(y0, (float)(img_h - 1)), 0.f);
- x1 = std::max(std::min(x1, (float)(img_w - 1)), 0.f);
- y1 = std::max(std::min(y1, (float)(img_h - 1)), 0.f);
-
- objects[i].rect.x = x0;
- objects[i].rect.y = y0;
- objects[i].rect.width = x1 - x0;
- objects[i].rect.height = y1 - y0;
- }
-
- return 0;
- }
-
- static void draw_objects(const cv::Mat& bgr, const std::vector<Object>& objects)
- {
- static const char* class_names[] = {
- "face","face_mask"
- };
-
- cv::Mat image = bgr.clone();
-
- for (size_t i = 0; i < objects.size(); i++)
- {
- const Object& obj = objects[i];
-
- fprintf(stderr, "%d = %.5f at %.2f %.2f %.2f x %.2f\n", obj.label, obj.prob,
- obj.rect.x, obj.rect.y, obj.rect.width, obj.rect.height);
-
- cv::rectangle(image, obj.rect, cv::Scalar(0, 255, 0));
-
- char text[256];
- sprintf(text, "%s %.1f%%", class_names[obj.label], obj.prob * 100);
-
- int baseLine = 0;
- cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
-
- int x = obj.rect.x;
- int y = obj.rect.y - label_size.height - baseLine;
- if (y < 0)
- y = 0;
- if (x + label_size.width > image.cols)
- x = image.cols - label_size.width;
-
- cv::rectangle(image, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)),
- cv::Scalar(255, 255, 255), -1);
-
- cv::putText(image, text, cv::Point(x, y + label_size.height),
- cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0));
- }
- #if USE_CAMERA
- imshow("camera", image);
- cv::waitKey(1);
- #else
- cv::imwrite("result.jpg", image);
- #endif
- }
-
- #if USE_CAMERA
- int main(int argc, char** argv)
- {
- cv::VideoCapture capture;
- capture.open(0); //修改这个参数可以选择打开想要用的摄像头
-
- cv::Mat frame;
- while (true)
- {
- capture >> frame;
- cv::Mat m = frame;
-
- std::vector<Object> objects;
- detect_yolov5(frame, objects);
-
- draw_objects(m, objects);
- if (cv::waitKey(30) >= 0)
- break;
- }
- }
- #else
- int main(int argc, char** argv)
- {
- if (argc != 2)
- {
- fprintf(stderr, "Usage: %s [imagepath]\n", argv[0]);
- return -1;
- }
-
- const char* imagepath = argv[1];
-
- struct timespec begin, end;
- long time;
- clock_gettime(CLOCK_MONOTONIC, &begin);
-
- cv::Mat m = cv::imread(imagepath, 1);
- if (m.empty())
- {
- fprintf(stderr, "cv::imread %s failed\n", imagepath);
- return -1;
- }
-
- std::vector<Object> objects;
- detect_yolov5(m, objects);
-
- clock_gettime(CLOCK_MONOTONIC, &end);
- time = (end.tv_sec - begin.tv_sec) + (end.tv_nsec - begin.tv_nsec);
- printf(">> Time : %lf ms\n", (double)time/1000000);
-
- draw_objects(m, objects);
-
- return 0;
- }
- #endif
bug1:Squeeze not supported yet!
生成param文件时如果遇到Squeeze not supported yet!等提示,解决方法为使用onnxsimplifier优化onnx模型在转换为param
打开eopt.param,将所有Reshape修改为0=-1,此步是为了能够动态输入
bug2:Segmentation Fault
这是由于未修改cpp中ex.extract()和permute保持一致
打开v5lite-e.yaml
根据anchors修改cpp内容,需要保持一致
打开eopt.param,根据permute修改cpp文件
打开examples/CMakeLists.txt ,添加ncnn_add_example(yolov5_lite) ,注意和文件名保持一致
完成后使用cmake编译
- cd ncnn/build
- cmake ..
- make
yolov5_lite部署后,树莓派识别还是很流畅的
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。