赞
踩
目录
- from pyecharts.charts import Pie
- from pyecharts import options as opts
-
- data = {'神农架林区': 2.6016,
- '恩施州': 3.0729,
- '十堰市': 3.4300,
- '宜昌市': 3.4555,
- '襄阳市': 4.0543,
- '咸宁市': 4.1145,
- '荆门市': 4.1777,
- '潜江市': 4.2574,
- '黄冈市': 4.4093,
- '黄石市': 4.4914,
- '随州市': 4.6480,
- '鄂州市': 4.8873,
- '荆州市': 4.9619,
- '仙桃市': 5.0019,
- '天门市': 5.0204,
- '孝感市': 5.0245,
- '武汉市': 5.3657}
- x_data = [i for i in data.keys()]
- y_data = [i for i in data.values()]
- pie = Pie()
- pie.width = "1500px"
- pie.add("", [list(z) for z in zip(x_data, y_data)], radius=["40%", "75%"])
- pie.set_global_opts(
- title_opts=opts.TitleOpts(title="2023年1~9月17个城市地表水环境质量状况排名", pos_bottom="0px", pos_left="36.5%"))
- # b为x轴,c为y轴,d为百分比
- pie.set_series_opts(label_opts=opts.LabelOpts(formatter="{b} {d}%"))
- pie.render("饼状图.html")

- import pyecharts.options as opts
- from pyecharts.charts import Bar
-
- data = {'神农架林区': 2.6016,
- '恩施州': 3.0729,
- '十堰市': 3.4300,
- '宜昌市': 3.4555,
- '襄阳市': 4.0543,
- '咸宁市': 4.1145,
- '荆门市': 4.1777,
- '潜江市': 4.2574,
- '黄冈市': 4.4093,
- '黄石市': 4.4914,
- '随州市': 4.6480,
- '鄂州市': 4.8873,
- '荆州市': 4.9619,
- '仙桃市': 5.0019,
- '天门市': 5.0204,
- '孝感市': 5.0245,
- '武汉市': 5.3657}
- x_data = [i for i in data.keys()]
- y_data = [i for i in data.values()]
- bar = Bar()
- bar.width = '1500px'
- bar.add_yaxis("2023年1~9月17个城市地表水环境质量状况排名", y_data, color='#85C1E9')
- bar.add_xaxis(x_data)
- # bar.set_global_opts(xaxis_opts=opts.AxisOpts(name="城市"),yaxis_opts=opts.AxisOpts(name="CWQI"))
- # bar.set_global_opts(xaxis_opts=opts.AxisOpts(name="城市", axislabel_opts={"rotate":45}),yaxis_opts=opts.AxisOpts(name="CWQI"))
- bar.set_global_opts(xaxis_opts=opts.AxisOpts(name="城市", axislabel_opts={"interval": "0"}),
- yaxis_opts=opts.AxisOpts(name="CWQI"))
- bar.render("直方图.html")

- from pyecharts.charts import WordCloud
- from collections import Counter
- import jieba
-
- # 读取网页并过滤
- with open("网页内容.txt", encoding="utf8") as f:
- asd = f.read()
- # 分词后-》过滤-》计算频率
- asds = jieba.lcut(asd)
- wordCount = []
- for asd in asds:
- if (len(asd) > 1):
- wordCount.append(asd)
- word_counter = Counter(wordCount)
- words_list = word_counter.most_common(10000)
- print(words_list)
- wc = WordCloud()
- wc.width = "1500px"
- wc.add("", data_pair=words_list)
- wc.render("词云.html")

- from pyecharts.charts import Map
- from pyecharts import options as opts
- data = {'神农架林区': 2.6016,
- #
- '恩施土家族苗族自治州': 3.0729,
- '十堰市': 3.4300,
- '宜昌市': 3.4555,
- '襄阳市': 4.0543,
- '咸宁市': 4.1145,
- '荆门市': 4.1777,
- '潜江市': 4.2574,
- '黄冈市': 4.4093,
- '黄石市': 4.4914,
- '随州市': 4.6480,
- '鄂州市': 4.8873,
- '荆州市': 4.9619,
- '仙桃市': 5.0019,
- '天门市': 5.0204,
- '孝感市': 5.0245,
- '武汉市': 5.3657}
- x_data = [i for i in data.keys()]
- y_data = [i for i in data.values()]
- map=Map()
- map.width="1500px"
- map.height="650px"
- map.add("",[list(z) for z in zip(x_data,y_data)],"湖北")
- # map.set_global_opts(visualmap_opts=opts.VisualMapOpts(is_show=True))
- map.set_global_opts(visualmap_opts=opts.VisualMapOpts(is_show=True,max_=max(y_data),min_=(min(y_data))))
- map.render(path="地图.html")

Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。