赞
踩
Kubernetes是由谷歌用Go语言开发的一款轻量级、开源、弹性伸缩、负载均衡的。Kubernetes的本质是一组服务器集群,它可以在集群的每个节点上运行特定的程序,来对节点中的容器进行管理。它的目的就是实现资源管理的自动化,主要提供了如下的主要功能:
自我修复:一旦某一个容器崩溃,能够在1秒中左右迅速启动新的容器
弹性伸缩:可以根据需要,自动对集群中正在运行的容器数量进行调整
服务发现:服务可以通过自动发现的形式找到它所依赖的服务
负载均衡:如果一个服务器启动该了多个容器,能够自动实现请求的负载均衡
版本回退:如果发现新发布的程序版本有问题,可以立即回退到原来的版本
存储编排:可以根据容器自身的需求自动创建数据卷
Kubernetes各个部分的工作:
master:集群控制中心,每个集群需要至少一个master节点负责集群的管控
node:工作负载节点,由master分配容器到这些node工作节点上,然后在node节点上的docker负责容器的运行
pod:kubernetes的最小控制单元,容器都是运行在pod中的,一个pod中可以有1个或者多个容器
controller:控制器,通过它来实现对pod的管理,比如启动pod、停止pod、伸缩pod的数量等
service:pod对外服务的统一入口
label:标签,用于对pod进行分类,同一类pod会拥有相同的标签
namespace:命名空间,用来隔离pod的运行环境
api-server:所有组件统一访问的接口
ctrontrollerManager:维持副本期望数目,负责维护集群的状态,比如程序部署安排、故障检测、自动扩展、滚动更新等
scheduler:负责介绍任务,选择合适的节点进行分配任务
etcd:键值对数据库,存储k8s集群所有重要信息(比如资源对象)(持久化)
kubelet:直接跟容器引擎交互实现容器的生命周期管理,即通过Docker来创建、更新、销毁容器
kube-proxy:负责提供集群内的服务发现和负载均衡(对外访问)
coredns:可以为集群中的SVC创建一个域名Ip的对应关系解析
dashboard:给k8s集群提供一个B/S结构访问体系
ingress controller:官方只能实现四层代理,ingress可以实现七层代理
fedetaion:提供一个可以跨集群中心多k8s统一管理功能
prometheus:提供k8s集群的监控能力
elk:提供k8s集群日志统一分析介入平台
etcd架构:
HTTP天生支持多种操作方式(Get、Post……)以及认证
Raft:读写信息存在着,为了防止信息出现损坏,WAL预写日志
Entry:是对WAL预写日志的临时备份
Snapshot:定时对预写日志进行完整的备份
Store:实时对数据和日志写入磁盘Store
以部署一个nginx服务来说明kubernetes系统各个组件调用关系
1.首先要明确,一旦kubernetes环境启动之后,master和node都会将自身的信息存储到etcd数据库中
2.一个nginx服务的安装请求会首先被发送到master节点的apiServer组件
3.apiServer组件会调用scheduler组件来决定到底应该把这个服务安装到哪个node节点上,在此时,它会从etcd中读取各个node节点的信息,然后按照一定的算法进行选择,并将结果告知apiServer
4.apiServer调用controller-manager去调度Node节点安装nginx服务
5.kubelet接收到指令后,会通知docker,然后由docker来启动一个nginx的pod,pod是kubernetes的最小操作单元,容器必须跑在pod中至此
6.一个nginx服务就运行了,如果需要访问nginx,就需要通过kube-proxy来对pod产生访问的代理。这样,对外用户就可以访问集群中的nginx服务了
Pod是kubernetes集群进行管理的最小单元,程序要运行必须部署在容器中,而容器必须存在于Pod中。
Pod可以认为是容器的封装,一个Pod中可以存在一个或者多个容器。同一个Pod里共用一个网络栈,这样就使得Pod中的容器端口不能冲突。同一个Pod里的容器也共享存储卷。
每个Pod中都可以包含一个或者多个容器,这些容器可以分为两类:
1.用户程序所在的容器,数量可多可少
2.Pause容器,这是每个Pod都会有的一个根容器,它的作用有两个:
可以以它为依据,评估整个Pod的健康状态
可以在根容器上设置Ip地址,其它容器都此Ip(Pod IP),以实现Pod内部的网路通信
这里是Pod内部的通讯,Pod的之间的通讯采用虚拟二层网络技术来实现,我们当前环境用的是Flannel
下面是Pod的资源清单:
apiVersion: v1 #必选,版本号,例如v1 kind: Pod #必选,资源类型,例如 Pod metadata: #必选,元数据 name: string #必选,Pod名称 namespace: string #Pod所属的命名空间,默认为"default" labels: #自定义标签列表 - name: string spec: #必选,Pod中容器的详细定义 containers: #必选,Pod中容器列表 - name: string #必选,容器名称 image: string #必选,容器的镜像名称 imagePullPolicy: [ Always|Never|IfNotPresent ] #获取镜像的策略 command: [string] #容器的启动命令列表,如不指定,使用打包时使用的启动命令 args: [string] #容器的启动命令参数列表 workingDir: string #容器的工作目录 volumeMounts: #挂载到容器内部的存储卷配置 - name: string #引用pod定义的共享存储卷的名称,需用volumes[]部分定义的的卷名 mountPath: string #存储卷在容器内mount的绝对路径,应少于512字符 readOnly: boolean #是否为只读模式 ports: #需要暴露的端口库号列表 - name: string #端口的名称 containerPort: int #容器需要监听的端口号 hostPort: int #容器所在主机需要监听的端口号,默认与Container相同 protocol: string #端口协议,支持TCP和UDP,默认TCP env: #容器运行前需设置的环境变量列表 - name: string #环境变量名称 value: string #环境变量的值 resources: #资源限制和请求的设置 limits: #资源限制的设置 cpu: string #Cpu的限制,单位为core数,将用于docker run --cpu-shares参数 memory: string #内存限制,单位可以为Mib/Gib,将用于docker run --memory参数 requests: #资源请求的设置 cpu: string #Cpu请求,容器启动的初始可用数量 memory: string #内存请求,容器启动的初始可用数量 lifecycle: #生命周期钩子 postStart: #容器启动后立即执行此钩子,如果执行失败,会根据重启策略进行重启 preStop: #容器终止前执行此钩子,无论结果如何,容器都会终止 livenessProbe: #对Pod内各容器健康检查的设置,当探测无响应几次后将自动重启该容器 exec: #对Pod容器内检查方式设置为exec方式 command: [string] #exec方式需要制定的命令或脚本 httpGet: #对Pod内个容器健康检查方法设置为HttpGet,需要制定Path、port path: string port: number host: string scheme: string HttpHeaders: - name: string value: string tcpSocket: #对Pod内个容器健康检查方式设置为tcpSocket方式 port: number initialDelaySeconds: 0 #容器启动完成后首次探测的时间,单位为秒 timeoutSeconds: 0 #对容器健康检查探测等待响应的超时时间,单位秒,默认1秒 periodSeconds: 0 #对容器监控检查的定期探测时间设置,单位秒,默认10秒一次 successThreshold: 0 failureThreshold: 0 securityContext: privileged: false restartPolicy: [Always | Never | OnFailure] #Pod的重启策略 nodeName: <string> #设置NodeName表示将该Pod调度到指定到名称的node节点上 nodeSelector: obeject #设置NodeSelector表示将该Pod调度到包含这个label的node上 imagePullSecrets: #Pull镜像时使用的secret名称,以key:secretkey格式指定 - name: string hostNetwork: false #是否使用主机网络模式,默认为false,如果设置为true,表示使用宿主机网络 volumes: #在该pod上定义共享存储卷列表 - name: string #共享存储卷名称 (volumes类型有很多种) emptyDir: {} #类型为emtyDir的存储卷,与Pod同生命周期的一个临时目录。为空值 hostPath: string #类型为hostPath的存储卷,表示挂载Pod所在宿主机的目录 path: string #Pod所在宿主机的目录,将被用于同期中mount的目录 secret: #类型为secret的存储卷,挂载集群与定义的secret对象到容器内部 scretname: string items: - key: string path: string configMap: #类型为configMap的存储卷,挂载预定义的configMap对象到容器内部 name: string items: - key: string path: string
Pod分为:自主式Pod和控制器管理Pod
控制器管理Pod:
ReplicationController用来确保容器应用的副本数始终保持在用户定义的副本数,即如果有容器异常退出,会自动创建新的Pod来替代;而如果异常多出来的容器也会自动回收。在新版本的Kubernets中建议使用ReplicaSet来取代ReplicationControlle
ReplicaSet跟ReplicationController没有本质不同,只是名字不一样,并且ReplicaSet支持集合式的selector
虽然ReplicaSet可以独立使用,但一般还是建议使用Deployment来自动管理ReplicaSet,这样就无需担心跟其他机制的不兼容问题(比如ReplicaSet不支持rolling-update但Deployment支持)
Horizontal Pod Autoscaling仅适用于Deployment和ReplicaSet,在V1版本中仅支持根据Pod的CPU利用率扩所容,在vlalpha版本中,支持根据内存和用户自定义的metric扩缩容
StatefulSet是为了解决有状态服务的问题(对应Deployment和ReplicaSets是为无状态服务而设计),其应用场景包括:
1.稳定的持久化存储,即Pod重新调度后还是能访问到相同的持久化数据,基于PVC来实现
2.稳定的网络标识,即Pod重新调度后其PodName和HostName不变,基于Headless Service(即没有Cluster IP的Service)来实现
3.有序部署,有序扩展,即Pod是有顺序的,在部署或者扩展的时候要依据定义的顺序依次进行(即从0到N-1,在下一个Pod运行之前所有之前的Pod必须都是Running和Ready状态),基于init containers来实现
4.有序收缩,有序删除(即从N-1到0)
DaemonSet确保全部(或者一些)Node上运行一个Pod的副本。当有Node加入集群时,也会为他们新增一个Pod。当有Node从集群移除时,这些Pod也会被回收。删除DaemonSet将会删除它创建的所有Pod
使用DaemonSet的一些典型用法:
1.运行集群存储daemon,例如在每个Node上运行glusterd、ceph。
2.在每个Node上运行日志收集daemon,例如fluentd、logstash
3.在每个Node上运行监控daemon,例如Prometheus Node Exporter
Job负责批处理任务,即仅执行一次的任务,它保证批处理任务的一个或多个Pod成功结束,Cron Job管理基于时间的Job,即:
1.在给定时间点只运行一次
2.周期性地在给定时间点运行
Kubernetes的网络模型假定了所有Pod都在一个可以直接连通的扁平的网络空间中,这在GCE(Google Compute Engine)里面是现成的网络模型,Kubernetes假定这个网络已经存在。而在私有云里搭建Kubernetes集群,就不能假定这个网络已经存在了。我们需要自己实现这个网络假设,将不同节点的Docker容器之间的互相访问先打通,然后运行Kubernetes
通信规则:
同一个Pod内的多个容器之间:lo
各Pod之间的通讯:Overlay Network
Pod与Service之间的通讯:各节点的Iptables规则
Flannel:网络规划服务,功能是让集群中的不同节点主机创建的Docker容器具有全集群唯一的虚拟IP地址。而且它还能在这些IP地址之间建立一个覆盖网络(Overlay Network),通过这个覆盖网络,将数据包原封不动地传递到目标容器内。
同一个Pod内部通讯:同一个Pod共享同一个网络命名空间,共享一个Linux协议栈
Pod1至Pod2
Pod1与Pod2不在同一台主机,Pod的地址是与docker0在同一个网段的,但docker0网段与宿主机网卡是两个完全不同的IP网段,并且不同Node之间的通信只能通过宿主机的物理网卡进行。将Pod的IP和所在Node的IP关联起来,通过这个关联让Pod可以互相访问
Pod1与Pod2在同一台机器,由Docker0网桥直接转发请求至Pod2,不需要经过Flannel
Pod至Service的网络:目前基于性能考虑,全部为iptables维护和转发
Pod到外网:Pod向外网发送请求,查找路由表,转发数据包到宿主机的网卡,宿主网卡完成路由选择后,iptables执行Masquerade,把源IP更改为宿主网卡的IP,然后向外网服务器发送请求
外网访问Pod:Service
多个容器是放在pod中的,这也是pod配置中最为关键的一项配置
[root@k8s-master01 ~]# kubectl explain pod.spec.containers
KIND: Pod
VERSION: v1
RESOURCE: containers <[]Object> # 数组,代表可以有多个容器
FIELDS:
name <string> # 容器名称
image <string> # 容器需要的镜像地址
imagePullPolicy <string> # 镜像拉取策略
command <[]string> # 容器的启动命令列表,如不指定,使用打包时使用的启动命令
args <[]string> # 容器的启动命令需要的参数列表
env <[]Object> # 容器环境变量的配置
ports <[]Object> # 容器需要暴露的端口号列表
resources <Object> # 资源限制和资源请求的设置
基本配置,创建pod-base.yaml文件,内容如下:
apiVersion: v1
kind: Pod
metadata:
name: pod-base
namespace: dev
labels:
user: heima
spec:
containers:
- name: nginx
image: nginx:1.17.1
- name: busybox
image: busybox:1.30
上面定义了一个比较简单Pod的配置,里面有两个容器:
1.nginx:用1.17.1版本的nginx镜像创建,(nginx是一个轻量级web容器)
2.busybox:用1.30版本的busybox镜像创建,(busybox是一个小巧的linux命令集合)
创建pod-imagepullpolicy.yaml文件,内容如下:
apiVersion: v1
kind: Pod
metadata:
name: pod-imagepullpolicy
namespace: dev
spec:
containers:
- name: nginx
image: nginx:1.17.1
imagePullPolicy: Never # 用于设置镜像拉取策略
- name: busybox
image: busybox:1.30
imagePullPolicy,用于设置镜像拉取策略,kubernetes支持配置三种拉取策略:
Always:总是从远程仓库拉取镜像(一直远程下载)
IfNotPresent:本地有则使用本地镜像,本地没有则从远程仓库拉取镜像(本地有就本地 本地没远程下载)
Never:只使用本地镜像,从不去远程仓库拉取,本地没有就报错 (一直使用本地)
默认值说明:
如果镜像tag为具体版本号, 默认策略是:IfNotPresent
如果镜像tag为:latest(最终版本) ,默认策略是always
在前面的案例中,一直有一个问题没有解决,就是busybox容器一直没有成功运行,那么到底是什么原因导致这个容器的故障呢?
原来busybox并不是一个程序,而是类似于一个工具类的集合,kubernetes集群启动管理后,它会自动关闭。解决方法就是让其一直在运行,这就用到了command配置。
创建pod-command.yaml文件,内容如下:
apiVersion: v1
kind: Pod
metadata:
name: pod-command
namespace: dev
spec:
containers:
- name: nginx
image: nginx:1.17.1
- name: busybox
image: busybox:1.30
command: ["/bin/sh","-c","touch /tmp/hello.txt;while true;do /bin/echo $(date +%T) >> /tmp/hello.txt; sleep 3; done;"]
稍微解释下上面命令的意思:
“/bin/sh”,“-c”, 使用sh执行命令
touch /tmp/hello.txt; 创建一个/tmp/hello.txt 文件
while true;do /bin/echo $(date +%T) >> /tmp/hello.txt; sleep 3; done; 每隔3秒向文件中写入当前时间
# 创建Pod [root@k8s-master01 pod]# kubectl create -f pod-command.yaml pod/pod-command created # 查看Pod状态 # 此时发现两个pod都正常运行了 [root@k8s-master01 pod]# kubectl get pods pod-command -n dev NAME READY STATUS RESTARTS AGE pod-command 2/2 Runing 0 2s # 进入pod中的busybox容器,查看文件内容 # 补充一个命令: kubectl exec pod名称 -n 命名空间 -it -c 容器名称 /bin/sh 在容器内部执行命令 # 使用这个命令就可以进入某个容器的内部,然后进行相关操作了 # 比如,可以查看txt文件的内容 [root@k8s-master01 pod]# kubectl exec pod-command -n dev -it -c busybox /bin/sh / # tail -f /tmp/hello.txt 14:44:19 14:44:22 14:44:25
特别说明:
通过上面发现command已经可以完成启动命令和传递参数的功能,为什么这里还要提供一个args选项,用于传递参数呢?这其实跟docker有点关系,kubernetes中的command、args两项其实是实现覆盖Dockerfile中ENTRYPOINT的功能。
1 如果command和args均没有写,那么用Dockerfile的配置。
2 如果command写了,但args没有写,那么Dockerfile默认的配置会被忽略,执行输入的command
3 如果command没写,但args写了,那么Dockerfile中配置的ENTRYPOINT的命令会被执行,使用当前args的参数
4 如果command和args都写了,那么Dockerfile的配置被忽略,执行command并追加上args参数
在前面的案例中,一直有一个问题没有解决,就是的busybox容器一直没有成功运行,那么到底是什么原因导致这个容器的故障呢?
原来busybox并不是一个程序,而是类似于一个工具类的集合,kubernetes集群启动管理后,它会自动关闭。解决方法就是让其一直在运行,这就用到了command配置。
创建pod-command.yaml文件,内容如下:
apiVersion: v1
kind: Pod
metadata:
name: pod-command
namespace: dev
spec:
containers:
- name: nginx
image: nginx:1.17.1
- name: busybox
image: busybox:1.30
command: ["/bin/sh","-c","touch /tmp/hello.txt;while true;do /bin/echo $(date +%T) >> /tmp/hello.txt; sleep 3; done;"]
command,用于在pod中的容器初始化完毕之后运行一个命令。
“/bin/sh”,“-c”, 使用sh执行命令
touch /tmp/hello.txt; 创建一个/tmp/hello.txt 文件
while true;do /bin/echo $(date +%T) >> /tmp/hello.txt; sleep 3; done; 每隔3秒向文件中写入当前时间
# 创建Pod [root@k8s-master01 pod]# kubectl create -f pod-command.yaml pod/pod-command created # 查看Pod状态 # 此时发现两个pod都正常运行了 [root@k8s-master01 pod]# kubectl get pods pod-command -n dev NAME READY STATUS RESTARTS AGE pod-command 2/2 Runing 0 2s # 进入pod中的busybox容器,查看文件内容 # 补充一个命令: kubectl exec pod名称 -n 命名空间 -it -c 容器名称 /bin/sh 在容器内部执行命令 # 使用这个命令就可以进入某个容器的内部,然后进行相关操作了 # 比如,可以查看txt文件的内容 [root@k8s-master01 pod]# kubectl exec pod-command -n dev -it -c busybox /bin/sh / # tail -f /tmp/hello.txt 14:44:19 14:44:22 14:44:25
特别说明:
通过上面发现command已经可以完成启动命令和传递参数的功能,为什么这里还要提供一个args选项,用于传递参数呢?这其实跟docker有点关系,kubernetes中的command、args两项其实是实现覆盖Dockerfile中ENTRYPOINT的功能。
1 如果command和args均没有写,那么用Dockerfile的配置。
2 如果command写了,但args没有写,那么Dockerfile默认的配置会被忽略,执行输入的command
3 如果command没写,但args写了,那么Dockerfile中配置的ENTRYPOINT的命令会被执行,使用当前args的参数
4 如果command和args都写了,那么Dockerfile的配置被忽略,执行command并追加上args参数
首先看下ports支持的子选项:
[root@k8s-master01 ~]# kubectl explain pod.spec.containers.ports
KIND: Pod
VERSION: v1
RESOURCE: ports <[]Object>
FIELDS:
name <string> # 端口名称,如果指定,必须保证name在pod中是唯一的
containerPort<integer> # 容器要监听的端口(0<x<65536)
hostPort <integer> # 容器要在主机上公开的端口,如果设置,主机上只能运行容器的一个副本(一般省略)
hostIP <string> # 要将外部端口绑定到的主机IP(一般省略)
protocol <string> # 端口协议。必须是UDP、TCP或SCTP。默认为“TCP”。
接下来,编写一个测试案例,创建pod-ports.yaml
apiVersion: v1
kind: Pod
metadata:
name: pod-ports
namespace: dev
spec:
containers:
- name: nginx
image: nginx:1.17.1
ports: # 设置容器暴露的端口列表
- name: nginx-port
containerPort: 80
protocol: TCP
# 创建Pod [root@k8s-master01 ~]# kubectl create -f pod-ports.yaml pod/pod-ports created # 查看pod # 在下面可以明显看到配置信息 [root@k8s-master01 ~]# kubectl get pod pod-ports -n dev -o yaml ...... spec: containers: - image: nginx:1.17.1 imagePullPolicy: IfNotPresent name: nginx ports: - containerPort: 80 name: nginx-port protocol: TCP
访问容器中的程序需要使用的是Podip:containerPort
容器中的程序要运行,肯定是要占用一定资源的,比如cpu和内存等,如果不对某个容器的资源做限制,那么它就可能吃掉大量资源,导致其它容器无法运行。针对这种情况,kubernetes提供了对内存和cpu的资源进行配额的机制,这种机制主要通过resources选项实现,他有两个子选项:
limits:用于限制运行时容器的最大占用资源,当容器占用资源超过limits时会被终止,并进行重启
requests :用于设置容器需要的最小资源,如果环境资源不够,容器将无法启动
可以通过上面两个选项设置资源的上下限。
接下来,编写一个测试案例,创建pod-resources.yaml
apiVersion: v1 kind: Pod metadata: name: pod-resources namespace: dev spec: containers: - name: nginx image: nginx:1.17.1 resources: # 资源配额 limits: # 限制资源(上限) cpu: "2" # CPU限制,单位是core数 memory: "10Gi" # 内存限制 requests: # 请求资源(下限) cpu: "1" # CPU限制,单位是core数 memory: "10Mi" # 内存限制
在这对cpu和memory的单位做一个说明:
cpu:core数,可以为整数或小数
memory: 内存大小,可以使用Gi、Mi、G、M等形式
# 运行Pod [root@k8s-master01 ~]# kubectl create -f pod-resources.yaml pod/pod-resources created # 查看发现pod运行正常 [root@k8s-master01 ~]# kubectl get pod pod-resources -n dev NAME READY STATUS RESTARTS AGE pod-resources 1/1 Running 0 39s # 接下来,停止Pod [root@k8s-master01 ~]# kubectl delete -f pod-resources.yaml pod "pod-resources" deleted # 编辑pod,修改resources.requests.memory的值为10Gi [root@k8s-master01 ~]# vim pod-resources.yaml # 再次启动pod [root@k8s-master01 ~]# kubectl create -f pod-resources.yaml pod/pod-resources created # 查看Pod状态,发现Pod启动失败 [root@k8s-master01 ~]# kubectl get pod pod-resources -n dev -o wide NAME READY STATUS RESTARTS AGE pod-resources 0/1 Pending 0 20s # 查看pod详情会发现,如下提示 [root@k8s-master01 ~]# kubectl describe pod pod-resources -n dev ...... Warning FailedScheduling 35s default-scheduler 0/3 nodes are available: 1 node(s) had taint {node-role.kubernetes.io/master: }, that the pod didn't tolerate, 2 Insufficient memory.(内存不足)
我们一般将pod对象从创建至终的这段时间范围称为pod的生命周期,它主要包含下面的过程:
1.pod创建过程
2.运行初始化容器(init container)过程
3.运行主容器(main container)
容器启动后钩子(post start)、容器终止前钩子(pre stop)
容器的存活性探测(liveness probe)、就绪性探测(readiness probe)
6.pod终止过程
在整个生命周期中,Pod会出现5种状态(相位),分别如下:
1.挂起(Pending):apiserver已经创建了pod资源对象,但它尚未被调度完成或者仍处于下载镜像的过程中
2.运行中(Running):pod已经被调度至某节点,并且所有容器都已经被kubelet创建完成
3.成功(Succeeded):pod中的所有容器都已经成功终止并且不会被重启
4.失败(Failed):所有容器都已经终止,但至少有一个容器终止失败,即容器返回了非0值的退出状态
5.未知(Unknown):apiserver无法正常获取到pod对象的状态信息,通常由网络通信失败所导致
pod的创建过程
1.用户通过kubectl或其他api客户端提交需要创建的pod信息给apiServer
2.apiServer开始生成pod对象的信息,并将信息存入etcd,然后返回确认信息至客户端
3.apiServer开始反映etcd中的pod对象的变化,其它组件使用watch机制来跟踪检查apiServer上的变动
4.scheduler发现有新的pod对象要创建,开始为Pod分配主机并将结果信息更新至apiServer
5.node节点上的kubelet发现有pod调度过来,尝试调用docker启动容器,并将结果回送至apiServer
6.apiServer将接收到的pod状态信息存入etcd中
1.用户向apiServer发送删除pod对象的命令
2.apiServcer中的pod对象信息会随着时间的推移而更新,在宽限期内(默认30s),pod被视为dead
3.将pod标记为terminating状态
4.kubelet在监控到pod对象转为terminating状态的同时启动pod关闭过程
5.端点控制器监控到pod对象的关闭行为时将其从所有匹配到此端点的service资源的端点列表中移除
6.如果当前pod对象定义了preStop钩子处理器,则在其标记为terminating后即会以同步的方式启动执行
7.pod对象中的容器进程收到停止信号
8.宽限期结束后,若pod中还存在仍在运行的进程,那么pod对象会收到立即终止的信号
9.kubelet请求apiServer将此pod资源的宽限期设置为0从而完成删除操作,此时pod对于用户已不可见
初始化容器是在pod的主容器启动之前要运行的容器,主要是做一些主容器的前置工作,它具有两大特征:
1.在 Pod启动过程中,Init容器会按顺序在网络和数据卷初始化之后启动。每个容器必须在下一个容器启动之前成功退出
2.如果由于运行时或失败退出,将导致容器启动失败,它会根据Pod 的restartPolicy 指定的策略进行重试。然而,如果 Pod 的restartPolicy设置为 Always,Init容器失败时会使用
RestartPolicy 策略
3.在所有的 Init 容器没有成功之前,Pod 将不会变成Ready状态。Init容器的端口I将不公在
Service中进行聚集。正在初始化中的Pod 处于Pending 状态,但应该公将 Initializing状态设置为 true
4.如果Pod重启,所有Init容器必须重新执行
5.对Init 容器spec 的修改被限制在容器image字段,修改其他字段都不会生效。更改 Init容器的image字段,等价于重启该Pod
6.Init容器具有应用容器的所有字段。除了readinessProbe,因为 Init 容器无法定义不同于完成(completion)的就绪(readiness)之外的其他状态。这会在验证过程中强制执行
7.在 Pod 中的每个 app和 Init容器的名称必须唯一;与任何其它容器共享同一个名称,会在验证时抛出错误
初始化容器有很多的应用场景,下面列出的是最常见的几个:
1.提供主容器镜像中不具备的工具程序或自定义代码
2.初始化容器要先于应用容器串行启动并运行完成,因此可用于延后应用容器的启动直至其依赖的条件得到满足
接下来做一个案例,模拟下面这个需求:
假设要以主容器来运行nginx,但是要求在运行nginx之前先要能够连接上mysql和redis所在服务器
为了简化测试,事先规定好mysql(192.168.90.14)和redis(192.168.90.15)服务器的地址
创建pod-initcontainer.yaml,内容如下:
apiVersion: v1 kind: Pod metadata: name: pod-initcontainer namespace: dev spec: containers: - name: main-container image: nginx:1.17.1 ports: - name: nginx-port containerPort: 80 initContainers: - name: test-mysql image: busybox:1.30 command: ['sh', '-c', 'until ping 192.168.90.14 -c 1 ; do echo waiting for mysql...; sleep 2; done;'] - name: test-redis image: busybox:1.30 command: ['sh', '-c', 'until ping 192.168.90.15 -c 1 ; do echo waiting for reids...; sleep 2; done;']
# 创建pod [root@k8s-master01 ~]# kubectl create -f pod-initcontainer.yaml pod/pod-initcontainer created # 查看pod状态 # 发现pod卡在启动第一个初始化容器过程中,后面的容器不会运行 root@k8s-master01 ~]# kubectl describe pod pod-initcontainer -n dev ........ Events: Type Reason Age From Message ---- ------ ---- ---- ------- Normal Scheduled 49s default-scheduler Successfully assigned dev/pod-initcontainer to node1 Normal Pulled 48s kubelet, node1 Container image "busybox:1.30" already present on machine Normal Created 48s kubelet, node1 Created container test-mysql Normal Started 48s kubelet, node1 Started container test-mysql # 动态查看pod [root@k8s-master01 ~]# kubectl get pods pod-initcontainer -n dev -w NAME READY STATUS RESTARTS AGE pod-initcontainer 0/1 Init:0/2 0 15s pod-initcontainer 0/1 Init:1/2 0 52s pod-initcontainer 0/1 Init:1/2 0 53s pod-initcontainer 0/1 PodInitializing 0 89s pod-initcontainer 1/1 Running 0 90s # 接下来新开一个shell,为当前服务器新增两个ip,观察pod的变化 [root@k8s-master01 ~]# ifconfig ens33:1 192.168.90.14 netmask 255.255.255.0 up [root@k8s-master01 ~]# ifconfig ens33:2 192.168.90.15 netmask 255.255.255.0 up
钩子函数能够感知自身生命周期中的事件,并在相应的时刻到来时运行用户指定的程序代码。
kubernetes在主容器的启动之后和停止之前提供了两个钩子函数:
1.post start:容器创建之后执行,如果失败了会重启容器
2.pre stop :容器终止之前执行,执行完成之后容器将成功终止,在其完成之前会阻塞删除容器的操作
钩子处理器支持使用下面三种方式定义动作:
1.Exec命令:在容器内执行一次命令
……
lifecycle:
postStart:
exec:
command:
- cat
- /tmp/healthy
……
2.TCPSocket:在当前容器尝试访问指定的socket
……
lifecycle:
postStart:
tcpSocket:
port: 8080
……
3.HTTPGet:在当前容器中向某url发起http请求
……
lifecycle:
postStart:
httpGet:
path: / #URI地址
port: 80 #端口号
host: 192.168.5.3 #主机地址
scheme: HTTP #支持的协议,http或者https
……
接下来,以exec方式为例,演示下钩子函数的使用,创建pod-hook-exec.yaml文件,内容如下:
apiVersion: v1 kind: Pod metadata: name: pod-hook-exec namespace: dev spec: containers: - name: main-container image: nginx:1.17.1 ports: - name: nginx-port containerPort: 80 lifecycle: postStart: exec: # 在容器启动的时候执行一个命令,修改掉nginx的默认首页内容 command: ["/bin/sh", "-c", "echo postStart... > /usr/share/nginx/html/index.html"] preStop: exec: # 在容器停止之前停止nginx服务 command: ["/usr/sbin/nginx","-s","quit"]
# 创建pod
[root@k8s-master01 ~]# kubectl create -f pod-hook-exec.yaml
pod/pod-hook-exec created
# 查看pod
[root@k8s-master01 ~]# kubectl get pods pod-hook-exec -n dev -o wide
NAME READY STATUS RESTARTS AGE IP NODE
pod-hook-exec 1/1 Running 0 29s 10.244.2.48 node2
# 访问pod
[root@k8s-master01 ~]# curl 10.244.2.48
postStart...
探针是由 kubelet对容器执行的定期诊断。要执行诊断,kubelet调用由容器实现的Handler。有三种类型的处理程序:
1.ExecAction:在容器内执行指定命令。如果命令退出时返回码为0则认为诊断成功。
2.TCPSocketAction:对指定端口上的容器的IP地址进行TCP检查。如果端口打开,则诊断
被认为是成功的。
3.HTTPGetAction:对指定的端口和路径上的容器的IP地址执行 HTTP Get请求。
如果响应的状态码大于等于200且小于400,则诊断被认为是成功的
容器探测用于检测容器中的应用实例是否正常工作,是保障业务可用性的一种传统机制。如果经过探测,实例的状态不符合预期,那么kubernetes就会把该问题实例" 摘除 ",不承担业务流量。kubernetes提供了两种探针来实现容器探测,分别是:
1.liveness probes:存活性探针,用于检测应用实例当前是否处于正常运行状态,如果不是,k8s会重启容器
2.readiness probes:就绪性探针,用于检测应用实例当前是否可以接收请求,如果不能,k8s不会转发流量
livenessProbe 决定是否重启容器,readinessProbe 决定是否将请求转发给容器。
readinessProbe-httpget:
apiVersion: v1 kind: Pod metadata: name: readiness-httpget-pod namespace: default spec: containers: - name: readiness-httpget-container image: wangyanglinux/myapp:v1 imagePullPolicy: IfNotPresent readinessProbe: httpGet: port: 80 path: /index1.html initialDelaySeconds: 1 #容器启动一秒以后 periodSeconds: 3 #每隔三秒检测一次 timeoutSeconds: 10 #请求超时时间
livenessProbe-exec
apiVersion: v1 kind: Pod metadata: name: liveness-exec-pod namespace: default spec: containers: - name: liveness-exec-container image: busybox imagePullPolicy: IfNotPresent command: ["/bin/sh","-c","touch /tmp/live; sleep 60; rm -rf /tmp/live; sleep 3600"] livenessProbe: exec: command: ["test","-e","/tmp/live"] initialDelaySeconds: 1 periodSeconds: 3
livenessProbe-tcp.yaml
apiVersion: v1
kind: Pod
metadata:
name: probe-tcp
spec:
containers:
- name: nginx
image: nginx
livenessProbe:
initialDelaySeconds: 5
timeoutSeconds: 1
tcpSocket:
port: 80
periodSeconds: 3
上面两种探针目前均支持三种探测方式:
1.Exec命令:在容器内执行一次命令,如果命令执行的退出码为0,则认为程序正常,否则不正常
……
livenessProbe:
exec:
command:
- cat
- /tmp/healthy
……
2.TCPSocket:将会尝试访问一个用户容器的端口,如果能够建立这条连接,则认为程序正常,否则不正常
……
livenessProbe:
tcpSocket:
port: 8080
……
3.HTTPGet:调用容器内Web应用的URL,如果返回的状态码在200和399之间,则认为程序正常,否则不正常
……
livenessProbe:
httpGet:
path: / #URI地址
port: 80 #端口号
host: 127.0.0.1 #主机地址
scheme: HTTP #支持的协议,http或者https
……
方式1:Exec
创建pod-liveness-exec.yaml
apiVersion: v1
kind: Pod
metadata:
name: pod-liveness-exec
namespace: dev
spec:
containers:
- name: nginx
image: nginx:1.17.1
ports:
- name: nginx-port
containerPort: 80
livenessProbe:
exec:
command: ["/bin/cat","/tmp/hello.txt"] # 执行一个查看文件的命令
创建pod,观察效果
# 创建Pod [root@k8s-master01 ~]# kubectl create -f pod-liveness-exec.yaml pod/pod-liveness-exec created # 查看Pod详情 [root@k8s-master01 ~]# kubectl describe pods pod-liveness-exec -n dev ...... Normal Created 20s (x2 over 50s) kubelet, node1 Created container nginx Normal Started 20s (x2 over 50s) kubelet, node1 Started container nginx Normal Killing 20s kubelet, node1 Container nginx failed liveness probe, will be restarted Warning Unhealthy 0s (x5 over 40s) kubelet, node1 Liveness probe failed: cat: can't open '/tmp/hello11.txt': No such file or directory # 观察上面的信息就会发现nginx容器启动之后就进行了健康检查 # 检查失败之后,容器被kill掉,然后尝试进行重启(这是重启策略的作用,后面讲解) # 稍等一会之后,再观察pod信息,就可以看到RESTARTS不再是0,而是一直增长 [root@k8s-master01 ~]# kubectl get pods pod-liveness-exec -n dev NAME READY STATUS RESTARTS AGE pod-liveness-exec 0/1 CrashLoopBackOff 2 3m19s # 当然接下来,可以修改成一个存在的文件,比如/tmp/hello.txt,再试,结果就正常了......
方式二:TCPSocket
创建pod-liveness-tcpsocket.yaml
apiVersion: v1
kind: Pod
metadata:
name: pod-liveness-tcpsocket
namespace: dev
spec:
containers:
- name: nginx
image: nginx:1.17.1
ports:
- name: nginx-port
containerPort: 80
livenessProbe:
tcpSocket:
port: 8080 # 尝试访问8080端口
创建pod,观察效果
# 创建Pod [root@k8s-master01 ~]# kubectl create -f pod-liveness-tcpsocket.yaml pod/pod-liveness-tcpsocket created # 查看Pod详情 [root@k8s-master01 ~]# kubectl describe pods pod-liveness-tcpsocket -n dev ...... Normal Scheduled 31s default-scheduler Successfully assigned dev/pod-liveness-tcpsocket to node2 Normal Pulled <invalid> kubelet, node2 Container image "nginx:1.17.1" already present on machine Normal Created <invalid> kubelet, node2 Created container nginx Normal Started <invalid> kubelet, node2 Started container nginx Warning Unhealthy <invalid> (x2 over <invalid>) kubelet, node2 Liveness probe failed: dial tcp 10.244.2.44:8080: connect: connection refused # 观察上面的信息,发现尝试访问8080端口,但是失败了 # 稍等一会之后,再观察pod信息,就可以看到RESTARTS不再是0,而是一直增长 [root@k8s-master01 ~]# kubectl get pods pod-liveness-tcpsocket -n dev NAME READY STATUS RESTARTS AGE pod-liveness-tcpsocket 0/1 CrashLoopBackOff 2 3m19s # 当然接下来,可以修改成一个可以访问的端口,比如80,再试,结果就正常了......
方式三:HTTPGet
创建pod-liveness-httpget.yaml
apiVersion: v1 kind: Pod metadata: name: pod-liveness-httpget namespace: dev spec: containers: - name: nginx image: nginx:1.17.1 ports: - name: nginx-port containerPort: 80 livenessProbe: httpGet: # 其实就是访问http://127.0.0.1:80/hello scheme: HTTP #支持的协议,http或者https port: 80 #端口号 path: /hello #URI地址
创建pod,观察效果
# 创建Pod [root@k8s-master01 ~]# kubectl create -f pod-liveness-httpget.yaml pod/pod-liveness-httpget created # 查看Pod详情 [root@k8s-master01 ~]# kubectl describe pod pod-liveness-httpget -n dev ....... Normal Pulled 6s (x3 over 64s) kubelet, node1 Container image "nginx:1.17.1" already present on machine Normal Created 6s (x3 over 64s) kubelet, node1 Created container nginx Normal Started 6s (x3 over 63s) kubelet, node1 Started container nginx Warning Unhealthy 6s (x6 over 56s) kubelet, node1 Liveness probe failed: HTTP probe failed with statuscode: 404 Normal Killing 6s (x2 over 36s) kubelet, node1 Container nginx failed liveness probe, will be restarted # 观察上面信息,尝试访问路径,但是未找到,出现404错误 # 稍等一会之后,再观察pod信息,就可以看到RESTARTS不再是0,而是一直增长 [root@k8s-master01 ~]# kubectl get pod pod-liveness-httpget -n dev NAME READY STATUS RESTARTS AGE pod-liveness-httpget 1/1 Running 5 3m17s # 当然接下来,可以修改成一个可以访问的路径path,比如/,再试,结果就正常了......
至此,已经使用liveness Probe演示了三种探测方式,但是查看livenessProbe的子属性,会发现除了这三种方式,还有一些其他的配置,在这里一并解释下:
[root@k8s-master01 ~]# kubectl explain pod.spec.containers.livenessProbe
FIELDS:
exec <Object>
tcpSocket <Object>
httpGet <Object>
initialDelaySeconds <integer> # 容器启动后等待多少秒执行第一次探测
timeoutSeconds <integer> # 探测超时时间。默认1秒,最小1秒
periodSeconds <integer> # 执行探测的频率。默认是10秒,最小1秒
failureThreshold <integer> # 连续探测失败多少次才被认定为失败。默认是3。最小值是1
successThreshold <integer> # 连续探测成功多少次才被认定为成功。默认是1
下面稍微配置两个,演示下效果即可:
[root@k8s-master01 ~]# more pod-liveness-httpget.yaml apiVersion: v1 kind: Pod metadata: name: pod-liveness-httpget namespace: dev spec: containers: - name: nginx image: nginx:1.17.1 ports: - name: nginx-port containerPort: 80 livenessProbe: httpGet: scheme: HTTP port: 80 path: / initialDelaySeconds: 30 # 容器启动后30s开始探测 timeoutSeconds: 5 # 探测超时时间为5s
查看pod的基本配置
#查看具体的pod配置 #小提示: # 在这里,可通过一个命令来查看每种资源的可配置项 # kubectl explain 资源类型 查看某种资源可以配置的一级属性 # kubectl explain 资源类型.属性 查看属性的子属性 kubectl explain pod KIND: Pod VERSION: v1 FIELDS: apiVersion <string> kind <string> metadata <Object> spec <Object> status <Object> #查看二级属性medata的配置 kubectl explain pod.metadata KIND: Pod VERSION: v1 RESOURCE: metadata <Object> FIELDS: annotations <map[string]string> clusterName <string> creationTimestamp <string> deletionGracePeriodSeconds <integer> deletionTimestamp <string> finalizers <[]string> generateName <string> generation <integer> labels <map[string]string> managedFields <[]Object> name <string> namespace <string> ownerReferences <[]Object> resourceVersion <string> selfLink <string> uid <string>
在kubernetes中基本所有资源的一级属性都是一样的,主要包含5部分:
1.apiVersion 版本,由kubernetes内部定义,版本号必须可以用 kubectl api-versions 查询到
2.kind 类型,由kubernetes内部定义,版本号必须可以用 kubectl api-resources 查询到
3.metadata 元数据,主要是资源标识和说明,常用的有name、namespace、labels等
4.spec 描述,这是配置中最重要的一部分,里面是对各种资源配置的详细描述
5.status 状态信息,里面的内容不需要定义,由kubernetes自动生成
在上面的属性中,spec是接下来研究的重点,继续看下它的常见子属性:
1.containers <[]Object> 容器列表,用于定义容器的详细信息
2.nodeName 根据nodeName的值将pod调度到指定的Node节点上
3.nodeSelector <map[]> 根据NodeSelector中定义的信息选择将该Pod调度到包含这些label的Node 上
4.hostNetwork 是否使用主机网络模式,默认为false,如果设置为true,表示使用宿主机网络
5.volumes <[]Object> 存储卷,用于定义Pod上面挂在的存储信息
6.restartPolicy 重启策略,表示Pod在遇到故障的时候的处理策略
kubernetes在集群启动之后,集群中的各个组件也都是以Pod方式运行的。可以通过下面命令查看:
[root@master ~]# kubectl get pod -n kube-system
NAMESPACE NAME READY STATUS RESTARTS AGE
kube-system coredns-6955765f44-68g6v 1/1 Running 0 2d1h
kube-system coredns-6955765f44-cs5r8 1/1 Running 0 2d1h
kube-system etcd-master 1/1 Running 0 2d1h
kube-system kube-apiserver-master 1/1 Running 0 2d1h
kube-system kube-controller-manager-master 1/1 Running 0 2d1h
kube-system kube-flannel-ds-amd64-47r25 1/1 Running 0 2d1h
kube-system kube-flannel-ds-amd64-ls5lh 1/1 Running 0 2d1h
kube-system kube-proxy-685tk 1/1 Running 0 2d1h
kube-system kube-proxy-87spt 1/1 Running 0 2d1h
kube-system kube-scheduler-master 1/1 Running 0 2d1h
# 命令格式: kubectl run (pod控制器名称) [参数]
# --image 指定Pod的镜像
# --port 指定端口
# --namespace 指定namespace
[root@master ~]# kubectl run nginx --image=nginx:latest --port=80 --namespace dev
deployment.apps/nginx created
# 查看Pod基本信息 [root@master ~]# kubectl get pods -n dev NAME READY STATUS RESTARTS AGE nginx 1/1 Running 0 43s # 查看Pod的详细信息 [root@master ~]# kubectl describe pod nginx -n dev Name: nginx Namespace: dev Priority: 0 Node: node1/192.168.5.4 Start Time: Wed, 08 May 2021 09:29:24 +0800 Labels: pod-template-hash=5ff7956ff6 run=nginx Annotations: <none> Status: Running IP: 10.244.1.23 IPs: IP: 10.244.1.23 Controlled By: ReplicaSet/nginx Containers: nginx: Container ID: docker://4c62b8c0648d2512380f4ffa5da2c99d16e05634979973449c98e9b829f6253c Image: nginx:latest Image ID: docker-pullable://nginx@sha256:485b610fefec7ff6c463ced9623314a04ed67e3945b9c08d7e53a47f6d108dc7 Port: 80/TCP Host Port: 0/TCP State: Running Started: Wed, 08 May 2021 09:30:01 +0800 Ready: True Restart Count: 0 Environment: <none> Mounts: /var/run/secrets/kubernetes.io/serviceaccount from default-token-hwvvw (ro) Conditions: Type Status Initialized True Ready True ContainersReady True PodScheduled True Volumes: default-token-hwvvw: Type: Secret (a volume populated by a Secret) SecretName: default-token-hwvvw Optional: false QoS Class: BestEffort Node-Selectors: <none> Tolerations: node.kubernetes.io/not-ready:NoExecute for 300s node.kubernetes.io/unreachable:NoExecute for 300s Events: Type Reason Age From Message ---- ------ ---- ---- ------- Normal Scheduled <unknown> default-scheduler Successfully assigned dev/nginx-5ff7956ff6-fg2db to node1 Normal Pulling 4m11s kubelet, node1 Pulling image "nginx:latest" Normal Pulled 3m36s kubelet, node1 Successfully pulled image "nginx:latest" Normal Created 3m36s kubelet, node1 Created container nginx Normal Started 3m36s kubelet, node1 Started container nginx
# 获取podIP [root@master ~]# kubectl get pods -n dev -o wide NAME READY STATUS RESTARTS AGE IP NODE ... nginx 1/1 Running 0 190s 10.244.1.23 node1 ... #访问POD [root@master ~]# curl http://10.244.1.23:80 <!DOCTYPE html> <html> <head> <title>Welcome to nginx!</title> </head> <body> <p><em>Thank you for using nginx.</em></p> </body> </html>
# 删除指定Pod [root@master ~]# kubectl delete pod nginx -n dev pod "nginx" deleted # 此时,显示删除Pod成功,但是再查询,发现又新产生了一个 [root@master ~]# kubectl get pods -n dev NAME READY STATUS RESTARTS AGE nginx 1/1 Running 0 21s # 这是因为当前Pod是由Pod控制器创建的,控制器会监控Pod状况,一旦发现Pod死亡,会立即重建 # 此时要想删除Pod,必须删除Pod控制器 # 先来查询一下当前namespace下的Pod控制器 [root@master ~]# kubectl get deploy -n dev NAME READY UP-TO-DATE AVAILABLE AGE nginx 1/1 1 1 9m7s # 接下来,删除此PodPod控制器 [root@master ~]# kubectl delete deploy nginx -n dev deployment.apps "nginx" deleted # 稍等片刻,再查询Pod,发现Pod被删除了 [root@master ~]# kubectl get pods -n dev No resources found in dev namespace.
apiVersion: v1
kind: Pod
metadata:
name: nginx
namespace: dev
spec:
containers:
- image: nginx:latest
name: pod
ports:
- name: nginx-port
containerPort: 80
protocol: TCP
然后就可以执行对应的创建和删除命令了:
创建:kubectl create -f pod-nginx.yaml
删除:kubectl delete -f pod-nginx.yaml
secret挂载
secret.yaml
apiVersion: v1
kind: Secret
metadata:
name: mysecret
type: Opaque
data:
username: YWRtaW4=
password: MWYyZDF1MmU2N2Rm
以环境变量方式获取secret
secret-pod.yaml
apiVersion: v1 kind: Pod metadata: name: mypod spec: containers: - name: nginx image: nginx env: - name: SECRET_USERNAME valueFrom: secretKeyRef: name: mysecret key: username - name: SECRET_PASSWORD valueFrom: secretKeyRef: name: mysecret key: password
以volume数据卷方式获取secret
secret-pod.yaml
apiVersion: v1 kind: Pod metadata: name: mypod spec: containers: - name: nginx image: nginx volumeMounts: - name: foo mountPath: "/etc/foo" readOnly: true volumes: - name: foo secret: secretName: mysecret
configMap:
作用:存储不加密数据到etcd,让Pod以变量或者Volume挂载到容器中。
场景:配置文件
redis.properties
redis.host=127.0.0.1
redis.port=6379
redis.password=123456
kubectl create configmap redis-config --from-file=redis.properties
以volume形式挂载configMap
config-map.yaml
apiVersion: v1 kind: Pod metadata: name: mypod spec: containers: - name: busybox image: busybox command: ["/bin/sh","-c","cat /etc/config/redis.properties"] volumeMounts: - name: config-volume mountPath: /etc/config volumes: - name: config-volume configMap: name: redis-config restartPolicy: Never
以变量形式挂载到pod
myconfig.yaml
apiVersion: v1
kind: ConfigMap
metadata:
name: myconfig
namespace: default
data:
special.level: info
special.type: hello
config-var.yaml
apiVersion: v1 kind: Pod metadata: name: mypod spec: containers: - name: busybox image: busybox command: ["/bin/sh","-c","echo $(LEVEL) $(TYPE)"] env: - name: LEVEL valueFrom: configMapKeyRef: name: myconfig key: special.level - name: TYPE valueFrom: configMapKeyRef: name: myconfig key: special.type restartPolicy: Never
Namespace是kubernetes系统中的一种非常重要资源,它的主要作用是用来实现多套环境的资源隔离或者多租户的资源隔离。
默认情况下,kubernetes集群中的所有的Pod都是可以相互访问的。但是在实际中,可能不想让两个Pod之间进行互相的访问,那此时就可以将两个Pod划分到不同的namespace下。kubernetes通过将集群内部的资源分配到不同的Namespace中,可以形成逻辑上的"组",以方便不同的组的资源进行隔离使用和管理。
可以通过kubernetes的授权机制,将不同的namespace交给不同租户进行管理,这样就实现了多租户的资源隔离。此时还能结合kubernetes的资源配额机制,限定不同租户能占用的资源,例如CPU使用量、内存使用量等等,来实现租户可用资源的管理。
kubernetes在集群启动之后,会默认创建几个namespace
[root@master ~]# kubectl get namespace
NAME STATUS AGE
default Active 45h # 所有未指定Namespace的对象都会被分配在default命名空间
kube-node-lease Active 45h # 集群节点之间的心跳维护,v1.13开始引入
kube-public Active 45h # 此命名空间下的资源可以被所有人访问(包括未认证用户)
kube-system Active 45h # 所有由Kubernetes系统创建的资源都处于这个命名空间
1.查看
# 1 查看所有的ns 命令:kubectl get ns [root@master ~]# kubectl get ns NAME STATUS AGE default Active 45h kube-node-lease Active 45h kube-public Active 45h kube-system Active 45h # 2 查看指定的ns 命令:kubectl get ns ns名称 [root@master ~]# kubectl get ns default NAME STATUS AGE default Active 45h # 3 指定输出格式 命令:kubectl get ns ns名称 -o 格式参数 # kubernetes支持的格式有很多,比较常见的是wide、json、yaml [root@master ~]# kubectl get ns default -o yaml apiVersion: v1 kind: Namespace metadata: creationTimestamp: "2021-05-08T04:44:16Z" name: default resourceVersion: "151" selfLink: /api/v1/namespaces/default uid: 7405f73a-e486-43d4-9db6-145f1409f090 spec: finalizers: - kubernetes status: phase: Active # 4 查看ns详情 命令:kubectl describe ns ns名称 [root@master ~]# kubectl describe ns default Name: default Labels: <none> Annotations: <none> Status: Active # Active 命名空间正在使用中 Terminating 正在删除命名空间 # ResourceQuota 针对namespace做的资源限制 # LimitRange针对namespace中的每个组件做的资源限制 No resource quota. No LimitRange resource.
2.创建
# 创建namespace
[root@master ~]# kubectl create ns dev
namespace/dev created
3.删除
# 删除namespace
[root@master ~]# kubectl delete ns dev
namespace "dev" deleted
4.配置方式
apiVersion: v1
kind: Namespace
metadata:
name: dev
Label是kubernetes系统中的一个重要概念。它的作用就是在资源上添加标识,用来对它们进行区分和选择。
Label的特点:
1.一个Label会以key/value键值对的形式附加到各种对象上,如Node、Pod、Service等等
2.一个资源对象可以定义任意数量的Label ,同一个Label也可以被添加到任意数量的资源对象上去
3.Label通常在资源对象定义时确定,当然也可以在对象创建后动态添加或者删除
可以通过Label实现资源的多维度分组,以便灵活、方便地进行资源分配、调度、配置、部署等管理工作。
标签定义完毕之后,还要考虑到标签的选择,这就要使用到Label Selector,即:
Label用于给某个资源对象定义标识
Label Selector用于查询和筛选拥有某些标签的资源对象
当前有两种Label Selector:
1.基于等式的Label Selector
name = slave: 选择所有包含Label中key="name"且value="slave"的对象
env != production: 选择所有包括Label中的key="env"且value不等于"production"的对象
2.基于集合的Label Selector
name in (master, slave): 选择所有包含Label中的key="name"且value="master"或"slave"的对象
name not in (frontend): 选择所有包含Label中的key=“name"且value不等于"frontend"的对象
标签的选择条件可以使用多个,此时将多个Label Selector进行组合,使用逗号”,"进行分隔即可。例如:
name=slave,env!=production
name not in (frontend),env!=production
# 为pod资源打标签 [root@master ~]# kubectl label pod nginx-pod version=1.0 -n dev pod/nginx-pod labeled # 为pod资源更新标签 [root@master ~]# kubectl label pod nginx-pod version=2.0 -n dev --overwrite pod/nginx-pod labeled # 查看标签 [root@master ~]# kubectl get pod nginx-pod -n dev --show-labels NAME READY STATUS RESTARTS AGE LABELS nginx-pod 1/1 Running 0 10m version=2.0 # 筛选标签 [root@master ~]# kubectl get pod -n dev -l version=2.0 --show-labels NAME READY STATUS RESTARTS AGE LABELS nginx-pod 1/1 Running 0 17m version=2.0 [root@master ~]# kubectl get pod -n dev -l version!=2.0 --show-labels No resources found in dev namespace. #删除标签 [root@master ~]# kubectl label pod nginx-pod version- -n dev pod/nginx-pod labeled
apiVersion: v1 kind: Pod metadata: name: nginx namespace: dev labels: version: "3.0" env: "test" spec: containers: - image: nginx:latest name: pod ports: - name: nginx-port containerPort: 80 protocol: TCP
然后就可以执行对应的更新命令了:kubectl apply -f pod-nginx.yaml
在kubernetes中,Pod是最小的控制单元,但是kubernetes很少直接控制Pod,一般都是通过Pod控制器来完成的。Pod控制器用于pod的管理,确保pod资源符合预期的状态,当pod的资源出现故障时,会尝试进行重启或重建pod。
在kubernetes中Pod控制器的种类有很多,本章节只介绍一种:Deployment。
# 命令格式: kubectl create deployment 名称 [参数] # --image 指定pod的镜像 # --port 指定端口 # --replicas 指定创建pod数量 # --namespace 指定namespace [root@master ~]# kubectl run nginx --image=nginx:latest --port=80 --replicas=3 -n dev deployment.apps/nginx created # 查看创建的Pod [root@master ~]# kubectl get pods -n dev NAME READY STATUS RESTARTS AGE nginx-5ff7956ff6-6k8cb 1/1 Running 0 19s nginx-5ff7956ff6-jxfjt 1/1 Running 0 19s nginx-5ff7956ff6-v6jqw 1/1 Running 0 19s # 查看deployment的信息 [root@master ~]# kubectl get deploy -n dev NAME READY UP-TO-DATE AVAILABLE AGE nginx 3/3 3 3 2m42s # UP-TO-DATE:成功升级的副本数量 # AVAILABLE:可用副本的数量 [root@master ~]# kubectl get deploy -n dev -o wide NAME READY UP-TO-DATE AVAILABLE AGE CONTAINERS IMAGES SELECTOR nginx 3/3 3 3 2m51s nginx nginx:latest run=nginx # 查看deployment的详细信息 [root@master ~]# kubectl describe deploy nginx -n dev Name: nginx Namespace: dev CreationTimestamp: Wed, 08 May 2021 11:14:14 +0800 Labels: run=nginx Annotations: deployment.kubernetes.io/revision: 1 Selector: run=nginx Replicas: 3 desired | 3 updated | 3 total | 3 available | 0 unavailable StrategyType: RollingUpdate MinReadySeconds: 0 RollingUpdateStrategy: 25% max unavailable, 25% max 违规词汇 Pod Template: Labels: run=nginx Containers: nginx: Image: nginx:latest Port: 80/TCP Host Port: 0/TCP Environment: <none> Mounts: <none> Volumes: <none> Conditions: Type Status Reason ---- ------ ------ Available True MinimumReplicasAvailable Progressing True NewReplicaSetAvailable OldReplicaSets: <none> NewReplicaSet: nginx-5ff7956ff6 (3/3 replicas created) Events: Type Reason Age From Message ---- ------ ---- ---- ------- Normal ScalingReplicaSet 5m43s deployment-controller Scaled up replicaset nginx-5ff7956ff6 to 3 # 删除 [root@master ~]# kubectl delete deploy nginx -n dev deployment.apps "nginx" deleted
创建一个deploy-nginx.yaml,内容如下:
apiVersion: apps/v1 kind: Deployment metadata: name: nginx namespace: dev spec: replicas: 3 selector: matchLabels: run: nginx template: metadata: labels: run: nginx spec: containers: - image: nginx:latest name: nginx ports: - containerPort: 80 protocol: TCP
扩容:
数目的更新并不会出现回滚信息
kubectl scale deployment nginx-deployment --replicas 10
如果集群支持horizontal pod autoscaling的话,还可以为Deployment设置自动扩展
kubectl set image deployment/nginx-deployment nginx=nginx:1.9.1
回滚:
kubectl rollout undo deployment/nginx-deployment
查看历史版本:
kubectl rollout history deployment/nginx-deployment
查看deployment是否完成:
kubectl rollout status deployment/nginx-deployment
主要面向有状态应用管理的控制器:
StatefulSet能较好地满足一些有状态应用特有的需求:
1.每个Pod有Order序号,会按序号创建、删除、更新Pod
2.通过配置headless service,使每个Pod有一个唯—的网络标识(hostname)
3.通过配置pvc template,每个Pod有一块独享的pv存储盘
4.支持—定数量的灰度发布
pv.yaml
apiVersion: v1
kind: PersistentVolume
metadata:
name: pv1
spec:
capacity:
storage: 20Gi
accessModes:
- ReadWriteOnce
persistentVolumeReclaimPolicy: Retain
nfs:
path: /k8s
server: 192.168.14.132
stateful-service.yaml
apiVersion: v1
kind: Service
metadata:
name: nginx
labels:
app: nginx
spec:
ports:
- port: 80
name: web
clusterIP: None
selector:
app: nginx
~
statefulset.yaml
apiVersion: apps/v1 kind: StatefulSet metadata: name: nginx-web spec: selector: matchLabels: app: nginx serviceName: "nginx" replicas: 3 template: metadata: labels: app: nginx spec: containers: - name: nginx image: nginx:alpine ports: - containerPort: 80 name: web volumeMounts: - name: www-storage mountPath: /usr/share/nginx/html volumeClaimTemplates: - metadata: name: www-storage spec: accessModes: ["ReadWriteOnce"] resources: requests: storage: 5Gi
虽然每个Pod都会分配一个单独的Pod IP,然而却存在如下两问题:
Pod IP 会随着Pod的重建产生变化
Pod IP 仅仅是集群内可见的虚拟IP,外部无法访问
这样对于访问这个服务带来了难度。因此,kubernetes设计了Service来解决这个问题。
Service可以看作是一组同类Pod对外的访问接口。借助Service,应用可以方便地实现服务发现和负载均衡。
1.创建集群内部可访问的Service
# 暴露Service [root@master ~]# kubectl expose deploy nginx --name=svc-nginx1 --type=ClusterIP --port=80 --target-port=80 -n dev service/svc-nginx1 exposed # 查看service [root@master ~]# kubectl get svc svc-nginx1 -n dev -o wide NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR svc-nginx1 ClusterIP 10.109.179.231 <none> 80/TCP 3m51s run=nginx # 这里产生了一个CLUSTER-IP,这就是service的IP,在Service的生命周期中,这个地址是不会变动的 # 可以通过这个IP访问当前service对应的POD [root@master ~]# curl 10.109.179.231:80 <!DOCTYPE html> <html> <head> <title>Welcome to nginx!</title> </head> <body> <h1>Welcome to nginx!</h1> ....... </body> </html>
2.创建集群外部也可访问的Service
# 上面创建的Service的type类型为ClusterIP,这个ip地址只用集群内部可访问
# 如果需要创建外部也可以访问的Service,需要修改type为NodePort
[root@master ~]# kubectl expose deploy nginx --name=svc-nginx2 --type=NodePort --port=80 --target-port=80 -n dev
service/svc-nginx2 exposed
# 此时查看,会发现出现了NodePort类型的Service,而且有一对Port(80:31928/TC)
[root@master ~]# kubectl get svc svc-nginx2 -n dev -o wide
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR
svc-nginx2 NodePort 10.100.94.0 <none> 80:31928/TCP 9s run=nginx
# 接下来就可以通过集群外的主机访问 节点IP:31928访问服务了
# 例如在的电脑主机上通过浏览器访问下面的地址
http://192.168.90.100:31928/
3 删除Service
[root@master ~]# kubectl delete svc svc-nginx-1 -n dev
service "svc-nginx-1" deleted
4.配置方式
创建一个svc-nginx.yaml,内容如下:
apiVersion: v1
kind: Service
metadata:
name: svc-nginx
namespace: dev
spec:
clusterIP: 10.109.179.231 #固定svc的内网ip
ports:
- port: 80
protocol: TCP
targetPort: 80
selector:
run: nginx
type: ClusterIP
然后就可以执行对应的创建和删除命令了:
创建:kubectl create -f svc-nginx.yaml
删除:kubectl delete -f svc-nginx.yaml
硬件要求:
测试环境:
master:CPU至少2核,4G内存,20G的硬盘
node:CPU至少4核,8G内存,40G的硬盘
生产环境:更高要求
生产部署K8s集群主要有两种方式:
(1)kubeadm(常用)
kubeadm是一个K8s部署工具,提供kubeadm init和kubeadm join,用于快速部署Kubernetes集群。
(2)二进制包
从github下载发行版的二进制包,手动部署每个组件,组成Kubernetes集群
虚拟机部署:
一台或多台机器,操作系统 Centos.x-86_x64
硬件配置:2GB或更多RAM,2个CPU或更多CPU,硬件30GB或更多
集群中所有机器之间网络互通
可以访问外网,需要拉取镜像
禁止swap分区
1.关闭防火墙
systemctl stop firewalld
systemctl disable firewalld
2.关闭selinux
sed -i 's/enforcing/disabled/' /etc/selinux/config
setenforce 0
3.关闭swap
swapoff -a
sed -ri 's/.*swap.*/#&/' /etc/fstab
4.根据规划设置主机名
hostnamectl set-hostname <hostname>
cat>>/etc/hosts<<EOF
<masterIp> masterName
<node1Ip> node1Name
<node2Ip> node2Name
EOF
5.将桥接的IPv4流量传递到iptables的链
cat>/etc/sysctl.d/k8s.conf<<EOF
net.bridge.bridge-nf-call-ip6tables=1
net.bridge.bridge-nf-call-iptables=1
EOF
sysctl --system
6.时间同步
yum install ntpdate -y
ntpdate time.windows.com
1.安装Docker
wget https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo -O /etc/yum.repos.d/docker-ce.repo
yum -y install docker-ce-18.06.1.ce-3.el7
systemctl enable docker && systemctl start docker
docker --version
cat > /etc/docker/daemon.json << EOF
{
"registry-mirrors": ["https://b9pmyelo.mirror.aliyuncs.com"]
}
EOF
2.添加阿里云YUM软件源
cat > /etc/yum.repos.d/kubernetes.repo << EOF
[kubernetes]
name=Kubernetes
baseurl=https://mirrors.aliyun.com/kubernetes/yum/repos/kubernetes-el7-x86_64
enabled=1
gpgcheck=0
repo_gpgcheck=0
gpgkey=https://mirrors.aliyun.com/kubernetes/yum/doc/yum-key.gpg https://mirrors.aliyun.com/kubernetes/yum/doc/rpm-package-key.gpg
EOF
3.安装kubeadm,kubelet和cubectl
yum install -y kubelet-1.18.0 kubeadm-1.18.0 kubectl-1.18.0
systemctl enable kubelet
在master节点上运行
kubeadm init \
--apiserver-advertise-address=<masterIp> \
--image-repository registry.aliyuncs.com/google_containers \
--kubernetes-version v1.18.0 \
--service-cidr=10.96.0.0/12 \
--pod-network-cidr=10.244.0.0/16
#apiserver-advertise-address表示当前节点的IP
#image-repository镜像
#kubernetes-version版本
#service-cidr、pod-network-cidr自己访问的Ip,跟当前节点不能冲突
使用kubectl工具
mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config
kubectl get nodes
在各个node上执行
向集群添加新节点,执行在kubeadm init输出的kubeadm join命令
kubeadm join <masterIp:6443> --token esce21.q6hetwm8si29qwn --discovery-token-ca-cert-hash sha256:***********
默认token有效期为24小时,当过期之后,该token就不可用了。这时就需要重新创建token,操作如下:
kubeadm token create --print-join-command
wget https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-flannel.yml
默认镜像地址无法访问,sed命令修改为docker hub镜像仓库。
kubectl apply -f https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-flannel.yml
kubectl get pods -n kube-system
在kubernetes集群中创建一个pod,验证是否正常运行
#部署nginx
kubectl create deployment nginx --image=nginx
#暴露端口
kubectl expose deployment nginx --port=80 --type=NodePort
#查看服务状态
kubectl get pod,svc
在kubernetes中,所有的内容都抽象为资源,用户需要通过操作资源来管理kubernetes。
kubernetes的本质就是一个集群系统,用户可以在集群中部署各种服务,其实就是在kubernetes集群中运行一个个的容器,并将指定的程序跑在容器中。
kubernetes的最小管理单元是pod而不是容器,所以只能将容器放在pod中,而kubernetes一般也不会直接管理pod,而是通过pod控制器来管理pod的。
pod可以提供服务之后,就要考虑如何访问pod中服务,kubernetes提供了service资源实现这个功能。当然,如果pod中程序的数据需要持久化,kubernetes还提供了各种存储系统。
YAML是一个类似XML、JSON的标记性语言。它强调以数据为中心,并不是以标记语言为重点。因而YAML本身的定义比较简单,号称“一种人性化的数据格式语言”YAML的语法比较简单,主要有下面几个:
1.大小写敏感
2.使用缩进表示层级关系
3.缩进不允许使用tab,只允许空格(只对低版本YAML)
4.缩进的空格数不重要,只要相同级的元素左对齐即可
5.‘#’表示注释
6.':'加空格
YAML支持以下几种数据类型:
1.纯量:单个的、不可再分的值,比如:字符串(字符串过长可拆成多行写,每一行会被转为一个空格)、布尔值、整数、浮点数、null、时间、日期
2.对象:键值对的集合,又称为映射/哈希/字典
3.数组:一组按次序排列的值,又称为序列/列表
test:
name:Yogen
age:23
kubernetes提供了三种资源管理的方式,分别是:
1.命令式对象管理:直接使用命令去操作kubernetes资源
kubectl run nginx-pod --image=nginx:1.17.1 --port=80
操作对象:文件
适用环境:测试
优点:简单
缺点:只能操作活动对象,无法审计、跟踪
基本操作:
kubectl是kubernetes集群的命令行工具,通过它能够对集群本身进行管理,并能够在集群上进行容器化应用的安装部署。kubectl命令的语法如下:
kubectl [command] [type] [name] [flags]
comand:指定要对资源执行的操作,例如create、get、delete
type:指定资源类型,比如deployment、pod、service
name:指定资源的名称,名称大小写敏感
flags:指定额外的可选参数
#查看所有pod kubectl get pod #查看某个名字的pod kubectl get pod pod-name #查看更详细 kubectl get pod pod-name -o wide #以yaml的格式显示 kubectl get pod pod-name -o yaml #以json的格式显示 kubectl get pod pod-name -o json #查看某个pod kubectl get pod pod_name #查看某个pod,以yaml格式展示结果 kubectl get pod pod_name -o yaml
kubernetes中所有的内容都抽象为资源,可以通过下面的命令进行查看
kubectl api-resources
经常使用的资源有下面这些:
案例:namespace/pod的创建和删除
#创建一个namespace kubectl create namespace dev #获取namespace kubectl get ns #在此namespace下创建并运行一个nginx的pod kubectl run pod --image=nginx:latest -n dev #查看新创建的pod kubectl get pod -n dev #删除指定的pod kubectl delete pod pod-name #删除指定的namespace kubectl delete ns dev
2.命令式对象配置:通过命令配置和配置文件去操作kubernetes资源
kubectl create/patch -f nginx-pod.yaml
操作对象:文件
适用环境:开发
优点:可以审计、跟踪
缺点:项目大时,配置文件多,操作麻烦
基本操作:
(1)创建一个nginx.yaml,内容如下:
apiVersion: v1 kind: Namespace metadata: name: dev --- apiVersion: v1 kind: Pod metadata: name: nginxpod namespace: dev spec: containers: - name: nginx-containers image: nginx:latest
(2)执行create命令,创建资源:
kubectl create -f nginxpod.yaml
此时发现创建了两个资源对象,分别是namespace和pod
(3)执行get命令,查看资源:
kubectl get -f nginxpod.yaml
4)执行delete命令,删除资源
kubectl delete -f nginxpod.yaml
3.声明式对象配置:通过apply命令和配置文件去操作kubernetes资源
kubectl apply -f nginx-pod.yaml
操作对象:目录
适用环境:开发
优点:支持目录操作
缺点:意外情况下难以调试
基本操作:
配置文件跟前面的nginx.yaml一样
# 首先执行一次kubectl apply -f yaml文件,发现创建了资源
kubectl apply -f nginxpod.yaml
# 再次执行一次kubectl apply -f yaml文件,发现说资源没有变动
kubectl apply -f nginxpod.yaml
总结:
其实声明式对象配置就是使用apply描述一个资源最终的状态(在yaml中定义状态)
使用apply操作资源:
如果资源不存在,就创建,相当于 kubectl create
如果资源已存在,就更新,相当于 kubectl patch
扩展:kubectl可以在node节点上运行吗 ?
kubectl的运行是需要进行配置的,它的配置文件是$HOME/.kube,如果想要在node节点运行此命令,需要将master上的.kube文件复制到node节点上,即在master节点上执行下面操作:
scp -r HOME/.kube node1: HOME/
创建/更新资源 使用声明式对象配置 kubectl apply -f XXX.yaml
删除资源 使用命令式对象配置 kubectl delete -f XXX.yaml
查询资源 使用命令式对象管理 kubectl get(describe) 资源名称
概述:
访问k8s集群的时候,需要经过三个步骤完成具体操作
1.认证
2.授权
3.准入控制
进行访问的时候,过程中都需要经过apiServer,apiServer做统一协调,比如门卫。
访问过程中需要证书、token、或者用户名+密码
如果访问pod需要serviceAccount
认证:
传输安全:对外不暴露8080端口,只能内部访问,对外使用端口6443
认证:
1.常用认证方式:https证书认证、基于ca证书
2.http token认证,通过token识别用户
3.http基本认证,用户名+密码
授权:
基于RBAC进行鉴权操作
基于角色访问控制
RBAC:基于角色的访问控制
角色:
role:特点命名空间访问权限
ClusterRole:所有命名空间访问权限
角色绑定:
roleBinding:角色绑定到主体
ClusterRoleBinding:集群角色绑定到主体
主体:
user:用户
group:用户组
serviceAccount:服务账号
准入控制:
就是准入控制器的列表,如果列表中有请求内容,通过,没有拒绝
role.yaml
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
namespace: dev
name: nginx-reader
rules:
- apiGroups: [""] # "" indicates the core API group
resources: ["pods"]
verbs: ["get","watch","list"]
role-binding.yaml
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: read-pods
namespace: dev
subjects:
- kind: User
name: lucky
apiGroup: rbac.authorization.k8s.io
roleRef:
kind: Role
name: nginx-reader
apiGroup: rbac.authorization.k8s.io
kubectl get role,rolebinding -n dev
1.把端口号对外暴漏,通过ip+端口号进行访问
使用Service里面的NodePort实现
2.NodePort缺陷
在每个节点上都会启动端口,在访问的时候通过任何节点,通过节点ip+暴露端口号实现访问
3.Ingress和Pod关系
pod和ingress通过service关联的
ingress作为统一入口,由service关联一组pod
apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:
name: example-ingress
spec:
rules:
- host: example.ingredemo.com
http:
paths:
- path: /
backend:
serviceName: web
servicePort: 80
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。