赞
踩
https://arxiv.org/pdf/1606.07792.pdf
wide & deep 模型的核心思想是结合线性模型的记忆能力(memorization)和 DNN 模型的泛化能力(generalization),在训练过程中同时优化两个模型的参数,从而达到整体模型的预测能力最优。
wide 主要用作学习样本中特征的共现性,产生的结果是和用户有过直接行为的 item,通过少量的交叉特征转换来补充 deep 的弱点
wide侧的输入可以包含了一些交叉特征、离散特征及部分连续特征
其中基φk(x)
是0/1布尔变量。它捕获了二元特征之间的相互作用,并给广义线性模型增加了非线性。
(e.g.,“AND(gender=female,language=en)”) is 1 if and only if theconstituent features (“gender=female” and “language=en”)are all 1, and 0 otherwise
deep 部分是一个前馈神经网络。通常情况下这部分特征使用的是用户行为特征,用于学习历史数据中不存在的特征组合。
deep 层的输入主要是一些稠密的连续特征和一些离散特征的embedding
对于分类特征,原始输入是特征字符串(例如 “language=en”)。这些稀疏的、高维的分类特征首先被转换成一个低维的、密集的实值向量,通常被称为嵌入向量。嵌入的维数通常是10~100
这些向量一般使用随机的方法进行初始化,随机可以均匀随机也可以随机成正态分布,随机初始化的目的是将向量初始化到一个数量级,在训练过程中通过最小化损失函数来优化模型
这些低维密集的嵌入向量和连续值特征concat之后被输入到神经网络的隐藏层,执行以下计算
对于联合训练来说,wide 只需要通过少量的交叉特征转换来补充 deep 的弱点,而不需要全部的离散值特征。联合训练是通过将梯度从输出同时反向传播到模型的 wide & deep 部分来完成的。
其中 Y 是0/1 lable,σ(·)
是 sigmoid 函数,φ(x)
是原始特征 x
的交叉特征,b
是偏置项.Wwide
是 wide 层的权重, Wdeep
是最终激活层的权重
最终训练模型结构图如下,在训练期间,输入层接受训练数据(标签和离散特征和连续特征)。在模型的 deep 部分,每个分类特征学习了一个32维的嵌入向量。将所有的嵌入特征与密集特征连接在一起,得到一个大约1200维的密集向量。然后馈入3 ReLU层,最后是 logistics 输出层。
wide 模型使用Ftrl
优化器,deep 模型使用Adagrad
优化器;
二分类损失函数:_binary_logistic_head_with_sigmoid_cross_entropy_loss
多分类损失函数:_multi_class_head_with_softmax_cross_entropy_loss
loss 更新方式logits = dnn_logits + linear_logits
import tempfile import tensorflow as tf from six.moves import urllib import pandas as pd flags = tf.app.flags FLAGS = flags.FLAGS flags.DEFINE_string("model_dir", "", "Base directory for output models.") flags.DEFINE_string("model_type", "wide_n_deep", "valid model types:{'wide','deep', 'wide_n_deep'") flags.DEFINE_integer("train_steps", 200, "Number of training steps.") flags.DEFINE_string("train_data", "", "Path to the training data.") flags.DEFINE_string("test_data", "", "path to the test data") COLUMNS = ["age", "workclass", "fnlwgt", "education", "education_num", "marital_status", "occupation", "relationship", "race", "gender", "capital_gain", "capital_loss", "hours_per_week", "native_country", "income_bracket"] LABEL_COLUMN = "label" CATEGORICAL_COLUMNS = ["workclass", "education", "marital_status", "occupation", "relationship", "race", "gender", "native_country"] CONTINUOUS_COLUMNS = ["age", "education_num", "capital_gain", "capital_loss", "hours_per_week"] # download test and train data def maybe_download(): if FLAGS.train_data: train_data_file = FLAGS.train_data else: train_file = tempfile.NamedTemporaryFile(delete=False) urllib.request.urlretrieve("http://mlr.cs.umass.edu/ml/machine-learning-databases/adult/adult.data", train_file.name) train_file_name = train_file.name train_file.close() print("Training data is downloaded to %s" % train_file_name) if FLAGS.test_data: test_file_name = FLAGS.test_data else: test_file = tempfile.NamedTemporaryFile(delete=False) urllib.request.urlretrieve("http://mlr.cs.umass.edu/ml/machine-learning-databases/adult/adult.test", test_file.name) # pylint: disable=line-too-long test_file_name = test_file.name test_file.close() print("Test data is downloaded to %s" % test_file_name) return train_file_name, test_file_name # build the estimator def build_estimator(model_dir): # 离散分类别的 gender = tf.contrib.layers.sparse_column_with_keys(column_name="gender", keys=["female", "male"]) education = tf.contrib.layers.sparse_column_with_hash_bucket("education", hash_bucket_size=1000) relationship = tf.contrib.layers.sparse_column_with_hash_bucket("relationship", hash_bucket_size=100) workclass = tf.contrib.layers.sparse_column_with_hash_bucket("workclass", hash_bucket_size=100) occupation = tf.contrib.layers.sparse_column_with_hash_bucket("occupation", hash_bucket_size=1000) native_country = tf.contrib.layers.sparse_column_with_hash_bucket("native_country", hash_bucket_size=1000) # Continuous base columns. age = tf.contrib.layers.real_valued_column("age") education_num = tf.contrib.layers.real_valued_column("education_num") capital_gain = tf.contrib.layers.real_valued_column("capital_gain") capital_loss = tf.contrib.layers.real_valued_column("capital_loss") hours_per_week = tf.contrib.layers.real_valued_column("hours_per_week") # 类别转换 age_buckets = tf.contrib.layers.bucketized_column(age, boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65]) # wide 层是枚举值特征,以及枚举值交叉特征 wide_columns = [gender, native_country, education, occupation, workclass, relationship, age_buckets, tf.contrib.layers.crossed_column([education, occupation], hash_bucket_size=int(1e4)), tf.contrib.layers.crossed_column([age_buckets, education, occupation], hash_bucket_size=int(1e6)), tf.contrib.layers.crossed_column([native_country, occupation], hash_bucket_size=int(1e4))] # embedding_column用来表示类别型的变量 # deep 层是 embedding 特征 和 连续性特征 deep_columns = [tf.contrib.layers.embedding_column(workclass, dimension=8), tf.contrib.layers.embedding_column(education, dimension=8), tf.contrib.layers.embedding_column(gender, dimension=8), tf.contrib.layers.embedding_column(relationship, dimension=8), tf.contrib.layers.embedding_column(native_country, dimension=8), tf.contrib.layers.embedding_column(occupation, dimension=8), age, education_num, capital_gain, capital_loss, hours_per_week, ] if FLAGS.model_type == "wide": m = tf.contrib.learn.LinearClassifier(model_dir=model_dir, feature_columns=wide_columns) elif FLAGS.model_type == "deep": m = tf.contrib.learn.DNNClassifier(model_dir=model_dir, feature_columns=deep_columns, hidden_units=[100, 50]) else: m = tf.contrib.learn.DNNLinearCombinedClassifier(model_dir=model_dir, linear_feature_columns=wide_columns, dnn_feature_columns=deep_columns, dnn_hidden_units=[100, 50]) return m def input_fn(df): continuous_cols = {k: tf.constant(df[k].values) for k in CONTINUOUS_COLUMNS} categorical_cols = {k: tf.SparseTensor(indices=[[i, 0] for i in range(df[k].size)], values=df[k].values, shape=[df[k].size, 1]) for k in CATEGORICAL_COLUMNS} # 原文例子为dense_shape feature_cols = dict(continuous_cols) feature_cols.update(categorical_cols) label = tf.constant(df[LABEL_COLUMN].values) return feature_cols, label def train_and_eval(): train_file_name, test_file_name = maybe_download() df_train = pd.read_csv( tf.gfile.Open(train_file_name), names=COLUMNS, skipinitialspace=True, engine="python" ) df_test = pd.read_csv( tf.gfile.Open(test_file_name), names=COLUMNS, skipinitialspace=True, skiprows=1, engine="python" ) # drop Not a number elements df_train = df_train.dropna(how='any', axis=0) df_test = df_test.dropna(how='any', axis=0) # convert >50 to 1 df_train[LABEL_COLUMN] = ( df_train["income_bracket"].apply(lambda x: ">50" in x).astype(int) ) df_test[LABEL_COLUMN] = ( df_test["income_bracket"].apply(lambda x: ">50K" in x)).astype(int) model_dir = tempfile.mkdtemp() if not FLAGS.model_dir else FLAGS.model_dir print("model dir = %s" % model_dir) m = build_estimator(model_dir) print(FLAGS.train_steps) m.fit(input_fn=lambda: input_fn(df_train), steps=FLAGS.train_steps) results = m.evaluate(input_fn=lambda: input_fn(df_test), steps=1) for key in sorted(results): print("%s: %s" % (key, results[key])) def main(_): train_and_eval() if __name__ == "__main__": tf.app.run()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。