赞
踩
- from sklearn.tree import DecisionTreeClassifier
-
- dtc = DecisionTreeClassifier() # 初始化
- dtc.fit(x_train, y_train) # 训练
-
- # 获取特征权重值
- weights = dtc.feature_importances_
- print('>>>特征权重值\n', weights)
-
- # 索引降序排列
- sort_index = np.argsort(weights)[::-1]
- # 对应的特征名
- name = [df.iloc[:, 1:].columns[i] for i in sort_index]
- print('\n>>>索引降序排列\n', sort_index)
- print('\n>>>特征名\n', name)
-
- # 可视化
- plt.bar(x=name, height=weights[sort_index], color='r')
- _ = plt.xticks(rotation=90)
- plt.title('Feature Weights')
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。