当前位置:   article > 正文

深入理解SpaCy:中级指南_spacy 不同模型的similarity

spacy 不同模型的similarity

在初级教程中,我们介绍了SpaCy库的一些基本特性和功能。在这篇中级指南中,我们将深入学习一些更高级的特性,包括词向量、依赖性解析、和自定义组件。

一、词向量

SpaCy库支持词向量,也称为Word Vectors或Word Embeddings,这是一种使用神经网络将词语映射到多维空间的技术,词语的语义相似度可以通过它们的向量的空间距离来衡量。

加载包含词向量的模型:

nlp = spacy.load('en_core_web_md')
  • 1

获取词向量:

tokens = nlp("dog cat banana")

for token in tokens:
    print(token.text, token.has_vector, token.vector_norm, token.is_oov)
  • 1
  • 2
  • 3
  • 4

计算词语相似度:

tokens = nlp("dog cat banana")

for token1 in tokens:
    for token2 in tokens:
        print(token1.text, token2.text, token1.similarity(token2))
  • 1
  • 2
  • 3
  • 4
  • 5

二、依赖性解析

依赖性解析是识别句子中各个词语之间的依赖关系的过程。SpaCy能够识别句子的句法结构,并提供了可视化的工具。

from spacy import displacy

doc = nlp("This is a sentence.")
displacy.serve(doc, style='dep')
  • 1
  • 2
  • 3
  • 4

三、自定义组件

SpaCy允许你添加自定义的处理组件,这些组件将会被加入到处理管道中,你可以使用它们对文档进行各种各样的处理。

下面的例子展示了如何添加一个自定义的组件,这个组件会在每个词后面添加一个感叹号:

def add_exclamation(doc):
    for token in doc:
        token.text += "!"
    return doc

nlp.add_pipe(add_exclamation, before='ner')
doc = nlp("This is a sentence.")
print([(token.text, token.ent_type_) for token in doc])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

在这篇中级指南中,我们学习了SpaCy库的一些高级特性,包括词向量、依赖性解析和自定义组件。这些特性都极大的扩展了SpaCy在自然语言处理领域的应用能力。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/你好赵伟/article/detail/562202
推荐阅读
相关标签
  

闽ICP备14008679号