赞
踩
Yolov5 中默认保存了一些针对 coco数据集的预设锚定框,在 yolov5 的配置文件*.yaml 中已经预设了640×640图像大小下锚定框的尺寸(以 yolov5s.yaml 为例):
- # anchors
- anchors:
- - [10,13, 16,30, 33,23] # P3/8
- - [30,61, 62,45, 59,119] # P4/16
- - [116,90, 156,198, 373,326] # P5/32
anchors参数共有三行,每行9个数值;且每一行代表应用不同的特征图;
1、第一行是在最大的特征图上的锚框
2、第二行是在中间的特征图上的锚框
3、第三行是在最小的特征图上的锚框;
在目标检测任务中,一般希望在大的特征图上去检测小目标,因为大特征图才含有更多小目标信息,因此大特征图上的anchor数值通常设置为小数值,而小特征图上数值设置为大数值检测大的目标。
yolov5 中不是只使用默认锚定框,在开始训练之前会对数据集中标注信息进行核查,计算此数据集标注信息针对默认锚定框的最佳召回率,当最佳召回率大于或等于0.98,则不需要更新锚定框;如果最佳召回率小于0.98,则需要重新计算符合此数据集的锚定框。
核查锚定框是否适合要求的函数在 /utils/autoanchor.py 文件中:
def check_anchors(dataset, model, thr=4.0, imgsz=640):
其中 thr 是指 数据集中标注框宽高比最大阈值,默认是使用 超参文件 hyp.scratch.yaml 中的 “anchor_t” 参数值。
核查主要代码如下:
- def metric(k): # compute metric
- r = wh[:, None] / k[None]
- x = torch.min(r, 1. / r).min(2)[0] # ratio metric
- best = x.max(1)[0] # best_x
- aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold
- bpr = (best > 1. / thr).float().mean() # best possible recall
- return bpr, aat
-
- bpr, aat = metric(m.anchor_grid.clone().cpu().view(-1, 2))
其中两个指标需要解释一下(bpr 和 aat):
即bpr(best possible recall)和 aat(anchors above threshold)。
其中 bpr 参数就是判断是否需要重新计算锚定框的依据(是否小于 0.98)。
重新计算符合此数据集标注框的锚定框,是利用 kmean聚类方法实现的,代码在 /utils/autoanchor.py 文件中:自己找找。
其kmean_anchors()函数中的参数做一下简单解释(代码中已经有了英文注释):
1.path:包含数据集文件路径等相关信息的 yaml 文件(比如 coco128.yaml), 或者 数据集张量(yolov5 自动计算锚定框时就是用的这种方式,先把数据集标签信息读取再处理)
2.n:锚定框的数量,即有几组;默认值是9
3.img_size:图像尺寸。计算数据集样本标签框的宽高比时,是需要缩放到 img_size 大小后再计算的;默认值是640
4.thr:数据集中标注框宽高比最大阈值,默认是使用 超参文件 hyp.scratch.yaml 中的 “anchor_t” 参数值;默认值是4.0;自动计算时,会自动根据你所使用的数据集,来计算合适的阈值。
5.gen:kmean聚类算法迭代次数,默认值是1000
6.verbose:是否打印输出所有计算结果,默认值是true
如果你不想自动计算锚定框,可以在 train.py 中设置参数
parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
重点在于如果使用 yolov5 训练效果并不好(排除其他原因,只考虑 “预设锚定框” 这个因素), yolov5在核查默认锚定框是否符合要求时,计算的最佳召回率大于0.98,没有自动计算锚定框;此时你可以自己手动计算锚定框。【即使自己的数据集中目标宽高比最大值小于4,默认锚定框也不一定是最合适的】。在这可以自己在labels.jpg中查看数据集目标物的宽高大小,超过4:1时即可自定义anchors大小,因为默认coco数据集宽高不一定适合你的数据集标注的大小。
首先可以自行编写一个程序,统计一下你所训练的数据集所有标签框宽高比,看下宽高比主要分布在哪个范围、最大宽高比是多少? 比如:你使用的数据集中目标宽高比最大达到了 5:1(甚至 10:1) ,那肯定需要重新计算锚定框了,针对coco数据集的最大宽高比是 4:1 。然后在 yolov5 程序中创建一个新的 python 文件 test.py,手动计算锚定框:
- import utils.autoanchor as autoAC
-
- # 对数据集重新计算 anchors
- new_anchors = autoAC.kmean_anchors('./data/mydata.yaml', 9, 640, 5.0, 1000, True)
- print(new_anchors)
问题1:你可能会出现报错,例如下:
- RuntimeError:
- An attempt has been made to start a new process before the
- current process has finished its bootstrapping phase.
- This probably means that you are not using fork to start your
- child processes and you have forgotten to use the proper idiom
- in the main module:
- if name == ‘main‘:
- freeze_support()
- …
- The “freeze_support()” line can be omitted if the program
- is not going to be frozen to produce an executable.
Python 解释器在 Windows平台 执行创建多进程的程序时,子进程会读取当前 Python 文件,用以创建进程。
在子进程读取当前文件时,读取到创建子进程的代码时又会创建新的子进程,这样程序就陷入递归创建进程的状态
按照提示将程序创建子进程的放进 if __name__ == '__main__':
语句内,该语句的作用是判断当前进程是否为主进程,是主进程才执行程序。
- import utils.autoanchor as autoAC
- if __name__ == '__main__':
- # 对数据集重新计算 anchors
- new_anchors = autoAC.kmean_anchors('./data/pk.yaml', 9, 640, 5.0, 1000, True)
- print(new_anchors)
运行脚本打印平均anchors。
- Scanning C:\Users\49626\Desktop\yolov5-master\pk\labels\train... 588 images, 8 backgrounds, 0 corrupt: 100%|██████████| 591/591 [00:08<00:00, 65.75it/s]
- WARNING Cache directory C:\Users\49626\Desktop\yolov5-master\pk\labels is not writeable: [WinError 183] : 'C:\\Users\\49626\\Desktop\\yolov5-master\\pk\\labels\\train.cache.npy' -> 'C:\\Users\\49626\\Desktop\\yolov5-master\\pk\\labels\\train.cache'
- AutoAnchor: WARNING Extremely small objects found: 5 of 1195 labels are <3 pixels in size
- AutoAnchor: Running kmeans for 9 anchors on 1195 points...
- 0%| | 0/1000 [00:00<?, ?it/s]AutoAnchor: thr=0.20: 0.9808 best possible recall, 5.49 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.317/0.708-mean/best, past_thr=0.455-mean: 19,13, 50,25, 87,41, 168,30, 152,74, 260,48, 269,106, 328,158, 510,220
- AutoAnchor: thr=0.20: 0.9808 best possible recall, 5.46 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.316/0.709-mean/best, past_thr=0.455-mean: 19,13, 49,24, 86,41, 171,30, 155,74, 270,49, 269,104, 326,162, 512,215
- AutoAnchor: thr=0.20: 0.9841 best possible recall, 5.47 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.316/0.710-mean/best, past_thr=0.453-mean: 18,12, 49,23, 86,43, 180,31, 256,44, 151,75, 267,98, 326,153, 505,215
- AutoAnchor: thr=0.20: 0.9841 best possible recall, 5.46 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.315/0.710-mean/best, past_thr=0.453-mean: 18,12, 50,22, 87,43, 180,31, 151,75, 263,44, 262,95, 333,156, 535,207
- AutoAnchor: thr=0.20: 0.9841 best possible recall, 5.46 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.315/0.710-mean/best, past_thr=0.454-mean: 18,11, 51,22, 92,42, 185,30, 151,74, 266,45, 260,93, 339,156, 539,207
- AutoAnchor: thr=0.20: 0.9900 best possible recall, 5.48 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.316/0.711-mean/best, past_thr=0.454-mean: 17,11, 52,22, 91,41, 175,29, 151,75, 257,47, 265,92, 331,158, 539,207
- AutoAnchor: thr=0.20: 0.9900 best possible recall, 5.46 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.316/0.712-mean/best, past_thr=0.455-mean: 17,11, 51,23, 91,41, 177,30, 153,74, 257,47, 267,92, 334,158, 547,206
- AutoAnchor: thr=0.20: 0.9900 best possible recall, 5.45 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.315/0.712-mean/best, past_thr=0.454-mean: 17,11, 47,23, 86,40, 186,30, 145,74, 254,45, 260,88, 334,149, 517,223
- AutoAnchor: thr=0.20: 0.9900 best possible recall, 5.44 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.315/0.713-mean/best, past_thr=0.453-mean: 17,11, 47,23, 85,40, 196,30, 246,45, 147,75, 263,87, 337,150, 512,222
- AutoAnchor: thr=0.20: 0.9900 best possible recall, 5.45 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.314/0.713-mean/best, past_thr=0.453-mean: 17,11, 48,23, 86,40, 198,29, 246,45, 147,75, 263,88, 337,150, 510,222
- AutoAnchor: thr=0.20: 0.9900 best possible recall, 5.45 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.314/0.713-mean/best, past_thr=0.453-mean: 17,11, 48,23, 85,41, 197,29, 149,72, 248,45, 269,88, 337,150, 495,227
- AutoAnchor: thr=0.20: 0.9900 best possible recall, 5.46 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.315/0.714-mean/best, past_thr=0.453-mean: 17,12, 48,22, 87,39, 202,29, 149,72, 248,45, 260,88, 324,148, 489,224
- AutoAnchor: thr=0.20: 0.9900 best possible recall, 5.46 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.315/0.714-mean/best, past_thr=0.453-mean: 17,12, 48,22, 87,39, 202,29, 149,72, 242,45, 264,89, 323,150, 489,226
- AutoAnchor: thr=0.20: 0.9900 best possible recall, 5.45 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.315/0.714-mean/best, past_thr=0.453-mean: 17,12, 48,22, 86,40, 203,29, 149,71, 243,45, 264,90, 323,155, 484,223
- AutoAnchor: thr=0.20: 0.9900 best possible recall, 5.46 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.316/0.714-mean/best, past_thr=0.454-mean: 17,12, 48,22, 86,39, 200,30, 151,72, 242,47, 260,90, 329,153, 468,230
- AutoAnchor: thr=0.20: 0.9900 best possible recall, 5.46 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.316/0.715-mean/best, past_thr=0.455-mean: 17,12, 48,22, 89,38, 199,29, 233,47, 152,72, 263,91, 325,153, 491,225
- AutoAnchor: thr=0.20: 0.9900 best possible recall, 5.46 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.316/0.715-mean/best, past_thr=0.455-mean: 16,12, 48,22, 89,38, 199,29, 232,47, 153,72, 262,91, 324,152, 493,225
- AutoAnchor: thr=0.20: 0.9900 best possible recall, 5.48 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.317/0.715-mean/best, past_thr=0.455-mean: 17,12, 48,22, 87,39, 201,29, 153,71, 232,47, 261,92, 323,151, 495,223
- AutoAnchor: thr=0.20: 0.9958 best possible recall, 5.41 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.313/0.714-mean/best, past_thr=0.454-mean: 15,12, 46,21, 89,37, 213,29, 159,72, 238,51, 261,92, 323,151, 510,216
- AutoAnchor: thr=0.20: 0.9958 best possible recall, 5.42 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.314/0.715-mean/best, past_thr=0.455-mean: 15,13, 45,21, 85,38, 210,29, 166,70, 234,51, 261,86, 321,151, 518,215
- AutoAnchor: thr=0.20: 0.9958 best possible recall, 5.42 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.315/0.715-mean/best, past_thr=0.455-mean: 15,13, 45,21, 85,38, 207,30, 166,71, 235,50, 263,85, 315,150, 518,212
- AutoAnchor: thr=0.20: 0.9983 best possible recall, 5.35 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.312/0.714-mean/best, past_thr=0.455-mean: 13,13, 48,21, 84,38, 189,28, 261,50, 178,75, 257,75, 310,154, 518,211
- AutoAnchor: thr=0.20: 0.9992 best possible recall, 5.32 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.311/0.715-mean/best, past_thr=0.456-mean: 11,12, 47,21, 88,35, 184,26, 163,66, 261,48, 254,74, 313,153, 547,211
- AutoAnchor: thr=0.20: 0.9992 best possible recall, 5.32 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.311/0.715-mean/best, past_thr=0.457-mean: 11,12, 47,21, 88,35, 182,26, 163,66, 261,48, 254,74, 315,153, 551,210
- AutoAnchor: thr=0.20: 0.9992 best possible recall, 5.32 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.311/0.715-mean/best, past_thr=0.457-mean: 11,12, 47,21, 88,35, 182,26, 162,66, 262,48, 255,74, 316,153, 551,210
- AutoAnchor: thr=0.20: 0.9992 best possible recall, 5.33 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.311/0.716-mean/best, past_thr=0.457-mean: 11,12, 47,21, 88,35, 184,26, 162,66, 258,48, 254,75, 318,150, 552,208
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.35 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.312/0.717-mean/best, past_thr=0.456-mean: 11,12, 48,20, 88,36, 184,26, 161,64, 258,47, 247,74, 317,150, 552,209
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.34 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.312/0.717-mean/best, past_thr=0.457-mean: 11,12, 47,20, 88,36, 185,26, 161,64, 257,47, 247,74, 318,149, 552,209
- AutoAnchor: Evolving anchors with Genetic Algorithm: fitness = 0.7172: 16%|█▋ | 165/1000 [00:00<00:00, 1640.33it/s]AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.31 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.309/0.719-mean/best, past_thr=0.454-mean: 10,14, 46,19, 76,42, 177,26, 160,71, 256,47, 240,76, 313,153, 571,201
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.32 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.308/0.720-mean/best, past_thr=0.452-mean: 10,14, 50,20, 78,42, 183,26, 147,75, 275,44, 249,76, 325,145, 539,201
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.31 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.308/0.721-mean/best, past_thr=0.453-mean: 10,14, 50,20, 78,41, 184,26, 147,75, 278,44, 250,76, 327,144, 545,203
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.28 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.308/0.724-mean/best, past_thr=0.456-mean: 9,14, 44,20, 76,41, 174,25, 157,64, 282,47, 250,79, 298,144, 548,210
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.28 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.309/0.726-mean/best, past_thr=0.457-mean: 9,14, 44,19, 79,41, 171,24, 157,65, 280,48, 246,81, 302,140, 565,205
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.29 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.311/0.731-mean/best, past_thr=0.459-mean: 9,15, 46,19, 79,39, 171,23, 157,64, 272,48, 252,82, 276,137, 525,209
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.30 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.311/0.731-mean/best, past_thr=0.459-mean: 9,15, 47,19, 81,40, 171,24, 154,63, 269,48, 252,83, 282,135, 537,206
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.27 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.309/0.732-mean/best, past_thr=0.458-mean: 8,15, 45,18, 81,39, 179,24, 155,64, 269,50, 259,82, 276,140, 550,202
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.30 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.311/0.732-mean/best, past_thr=0.460-mean: 8,16, 45,17, 84,36, 181,25, 143,65, 272,50, 258,76, 269,129, 551,208
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.32 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.312/0.732-mean/best, past_thr=0.460-mean: 8,16, 46,18, 82,36, 179,25, 142,63, 262,51, 261,74, 270,129, 545,214
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.33 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.313/0.733-mean/best, past_thr=0.460-mean: 9,17, 45,18, 81,36, 188,25, 143,63, 245,51, 262,74, 270,129, 516,215
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.33 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.313/0.733-mean/best, past_thr=0.460-mean: 9,17, 45,18, 81,37, 189,25, 145,64, 244,50, 262,74, 267,130, 510,215
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.33 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.313/0.733-mean/best, past_thr=0.460-mean: 9,17, 45,18, 81,37, 188,25, 144,64, 244,50, 262,74, 266,129, 511,215
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.33 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.313/0.734-mean/best, past_thr=0.460-mean: 9,17, 45,18, 81,37, 187,25, 145,65, 245,50, 262,74, 266,129, 511,214
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.33 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.313/0.734-mean/best, past_thr=0.460-mean: 9,17, 45,18, 81,37, 187,25, 145,65, 245,50, 262,74, 266,129, 511,214
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.33 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.313/0.734-mean/best, past_thr=0.460-mean: 9,17, 45,18, 81,37, 188,25, 145,64, 245,50, 261,75, 265,128, 511,214
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.32 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.312/0.734-mean/best, past_thr=0.459-mean: 8,16, 45,17, 80,36, 181,26, 142,68, 251,49, 260,76, 274,133, 526,204
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.33 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.311/0.735-mean/best, past_thr=0.457-mean: 8,16, 43,17, 78,36, 188,27, 142,72, 241,43, 240,85, 293,138, 511,198
- AutoAnchor: Evolving anchors with Genetic Algorithm: fitness = 0.7348: 38%|███▊ | 376/1000 [00:00<00:00, 1908.21it/s]AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.34 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.312/0.735-mean/best, past_thr=0.457-mean: 8,16, 43,17, 78,36, 188,27, 236,43, 142,72, 238,85, 293,138, 509,197
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.34 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.312/0.735-mean/best, past_thr=0.458-mean: 8,16, 43,17, 78,36, 188,27, 142,72, 236,43, 237,85, 293,139, 508,196
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.33 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.311/0.735-mean/best, past_thr=0.458-mean: 8,16, 43,17, 78,36, 188,28, 143,72, 237,44, 240,85, 295,137, 508,197
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.33 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.311/0.735-mean/best, past_thr=0.457-mean: 8,16, 43,17, 78,36, 187,27, 236,43, 143,73, 242,85, 295,139, 505,197
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.33 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.311/0.735-mean/best, past_thr=0.457-mean: 8,16, 43,17, 78,37, 187,27, 143,73, 237,44, 247,84, 295,139, 500,198
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.33 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.311/0.735-mean/best, past_thr=0.457-mean: 8,16, 43,17, 78,36, 187,27, 142,73, 238,44, 248,84, 295,138, 499,198
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.31 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.311/0.736-mean/best, past_thr=0.459-mean: 8,15, 45,18, 81,37, 190,27, 232,43, 149,69, 267,86, 288,137, 471,203
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.31 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.312/0.736-mean/best, past_thr=0.460-mean: 8,15, 45,18, 79,37, 190,28, 231,43, 152,69, 264,86, 289,138, 469,203
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.32 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.312/0.736-mean/best, past_thr=0.459-mean: 8,15, 44,18, 79,37, 190,28, 231,43, 153,70, 262,86, 292,138, 466,203
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.32 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.312/0.736-mean/best, past_thr=0.460-mean: 8,15, 45,18, 80,37, 189,28, 226,44, 153,70, 262,86, 291,139, 470,208
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.32 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.312/0.736-mean/best, past_thr=0.460-mean: 8,15, 44,18, 79,36, 190,28, 224,43, 152,70, 264,86, 288,138, 467,208
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.33 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.312/0.736-mean/best, past_thr=0.460-mean: 8,15, 44,18, 79,36, 192,27, 225,44, 152,69, 247,84, 289,138, 475,217
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.32 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.312/0.736-mean/best, past_thr=0.460-mean: 8,15, 44,18, 79,36, 192,27, 225,44, 152,69, 248,84, 289,138, 476,216
- AutoAnchor: Evolving anchors with Genetic Algorithm: fitness = 0.7362: 59%|█████▉ | 594/1000 [00:00<00:00, 2025.15it/s]AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.33 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.313/0.736-mean/best, past_thr=0.460-mean: 8,15, 44,18, 79,36, 190,27, 224,44, 152,68, 247,84, 289,137, 473,215
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.33 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.313/0.736-mean/best, past_thr=0.460-mean: 8,15, 44,18, 80,37, 189,27, 223,44, 152,68, 247,84, 288,137, 473,216
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.33 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.313/0.736-mean/best, past_thr=0.461-mean: 8,15, 44,18, 80,37, 188,27, 224,43, 153,67, 247,83, 287,137, 475,216
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.33 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.313/0.736-mean/best, past_thr=0.461-mean: 8,15, 44,18, 80,37, 188,27, 224,43, 153,67, 247,83, 287,137, 475,216
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.33 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.313/0.736-mean/best, past_thr=0.461-mean: 8,15, 44,18, 80,37, 188,27, 224,43, 153,67, 247,83, 286,137, 475,216
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.33 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.313/0.736-mean/best, past_thr=0.460-mean: 8,15, 44,18, 80,37, 188,27, 225,43, 153,67, 248,83, 286,137, 473,215
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.33 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.313/0.736-mean/best, past_thr=0.460-mean: 8,15, 44,18, 80,37, 188,27, 224,43, 152,68, 248,83, 288,136, 476,215
- AutoAnchor: Evolving anchors with Genetic Algorithm: fitness = 0.7364: 84%|████████▍ | 842/1000 [00:00<00:00, 2203.49it/s]AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.33 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.313/0.736-mean/best, past_thr=0.461-mean: 8,15, 44,18, 80,37, 188,27, 224,43, 153,68, 249,83, 288,136, 476,215
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.34 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.313/0.737-mean/best, past_thr=0.461-mean: 8,15, 44,18, 80,37, 187,27, 221,43, 154,67, 249,83, 285,136, 480,213
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.34 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.313/0.737-mean/best, past_thr=0.461-mean: 8,15, 44,18, 80,37, 186,27, 221,43, 154,67, 249,83, 285,136, 481,213
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.34 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.313/0.737-mean/best, past_thr=0.460-mean: 8,15, 44,18, 81,38, 187,26, 219,43, 152,67, 247,84, 282,136, 498,212
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.34 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.313/0.737-mean/best, past_thr=0.460-mean: 8,15, 43,18, 80,38, 190,26, 219,43, 152,68, 247,83, 283,132, 497,210
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.34 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.313/0.737-mean/best, past_thr=0.460-mean: 8,15, 43,18, 81,38, 191,26, 221,43, 150,68, 246,82, 284,132, 492,212
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.35 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.313/0.737-mean/best, past_thr=0.460-mean: 8,15, 43,18, 81,38, 191,26, 221,43, 149,67, 247,82, 284,131, 486,211
- AutoAnchor: Evolving anchors with Genetic Algorithm: fitness = 0.7370: 100%|██████████| 1000/1000 [00:00<00:00, 2132.71it/s]
- AutoAnchor: thr=0.20: 1.0000 best possible recall, 5.35 anchors past thr
- AutoAnchor: n=9, img_size=640, metric_all=0.313/0.737-mean/best, past_thr=0.460-mean: 8,15, 43,18, 81,38, 191,26, 221,43, 149,67, 247,82, 284,131, 486,211
- [[ 8.0319 15.323]
- [ 42.802 17.647]
- [ 81.306 37.98]
- [ 191.47 26.115]
- [ 220.98 42.882]
- [ 149.14 66.916]
- [ 247.44 82.486]
- [ 283.74 131.36]
- [ 485.51 211.37]]
输出的 9 组新的锚定框即是根据自己的数据集来计算的,可以按照顺序替换到你所使用的配置文件*.yaml中(比如 yolov5s.yaml)。就可以重新训练了。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。