赞
踩
简单回顾:
FM的公式:
y
^
(
x
)
:
=
w
0
+
∑
i
=
1
n
w
i
x
i
⎵
L
R
模
型
+
∑
i
=
1
n
∑
j
=
i
+
1
n
⟨
v
i
,
v
j
⟩
x
i
x
j
⎵
D
e
n
s
e
化
两
两
特
征
\hat{y}(x) :=w_{0}+\underbrace{\sum_{i=1}^{n} w_{i} x_{i}}_{LR模型}+\underbrace{\sum_{i=1}^{n} \sum_{j=i+1}^{n}\left\langle v_{i}, v_{j}\right\rangle x_{i} x_{j}}_{Dense化两两特征}
y^(x):=w0+LR模型
i=1∑nwixi+Dense化两两特征
i=1∑nj=i+1∑n⟨vi,vj⟩xixj
KaTeX parse error: Unknown column alignment: * at position 172: …{\begin{array}{*̲{20}{c}} {0.4}\…
v
i
v_i
vi 和
v
j
v_j
vj 又是什么含义呢?
v
i
v_i
vi 的意思:对于 $x_i $这个特征来说它会学到一个 embedding 向量,特征组合权重是通过各自的 embedding 的内积呈现的,因为它内积完就是个数值,可以代表它的权重,这就是 FM 模型。
v
1
[
0.3
,
0.2
,
0.8
,
0.5
,
0.3
]
v
2
[
0.2
,
0.5
,
0.7
,
0.9
,
0.1
]
v
3
[
0.1
,
0.4
,
0.6
,
0.3
,
0.1
]
⋅
⋅
⋅
v
n
−
1
[
0.3
,
0.5
,
0.9
,
0.3
,
0.1
]
v
n
[
0.4
,
0.1
,
0.4
,
0.9
,
0.1
]
v_{1} \ \ [0.3,0.2,0.8,0.5,0.3]\\ v_{2} \ \ [0.2,0.5,0.7,0.9,0.1]\\ v_{3} \ \ [0.1,0.4,0.6,0.3,0.1]\\ \cdot \cdot \cdot \\ v_{n-1} \ [0.3,0.5,0.9,0.3,0.1]\\ v_{n} \ \ [0.4,0.1,0.4,0.9,0.1]\\
v1 [0.3,0.2,0.8,0.5,0.3]v2 [0.2,0.5,0.7,0.9,0.1]v3 [0.1,0.4,0.6,0.3,0.1]⋅⋅⋅vn−1 [0.3,0.5,0.9,0.3,0.1]vn [0.4,0.1,0.4,0.9,0.1]
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。