当前位置:   article > 正文

什么是Flink CDC,以及如何使用_flinkcdc,2024年最新2024最新大数据开发开发者学习路线

flink cdc

CDC介绍

数据库中的CDC(Change Data Capture,变更数据捕获)是一种用于实时跟踪数据库中数据变化的技术。CDC的主要目的是在数据库中捕获增量数据,以便在需要时可以轻松地将这些数据合并到其他系统或应用程序中。CDC在数据库管理、数据同步、数据集成和数据备份等方面具有广泛的应用。

CDC通常通过以下几种方式实现:

  1. 基于触发器的CDC:在表上创建触发器,当数据发生更改时,触发器会将更改的数据记录到其他系统或表中。
  2. 基于事务日志的CDC:通过读取数据库事务日志,将日志中的更改记录解析为可操作的数据。这种方法通常用于增量备份和恢复。
  3. 基于游标的CDC:在数据库中使用游标,逐行处理数据更改,并将这些更改应用于其他系统或表。
  4. 基于时间戳的CDC:为表中的每个数据行分配一个时间戳,当数据发生更改时,更新相应的时间戳。然后,可以使用时间戳来识别和处理数据更改。
  5. 基于消息队列的CDC:将数据更改作为事件发送到消息队列,以便其他系统或应用程序可以订阅和处理这些事件。

Flink CDC

Flink CDC(Change Data Capture,即数据变更抓取)是一个开源的数据库变更日志捕获和处理框架,它可以实时地从各种数据库(如MySQL、PostgreSQL、Oracle、MongoDB等)中捕获数据变更并将其转换为流式数据。Flink CDC 可以帮助实时应用程序实时地处理和分析这些流数据,从而实现数据同步、数据管道、实时分析和实时应用等功能。

Flink CDC 的主要特点包括:

  1. 支持多种数据库类型:Flink CDC 支持多种数据库,如 MySQL、PostgreSQL、Oracle、MongoDB 等。
  2. 实时数据捕获:Flink CDC 能够实时捕获数据库中的数据变更,并将其转换为流式数据。
  3. 高性能:Flink CDC 基于 Flink 引擎,具有高性能的数据处理能力。
  4. 低延迟:Flink CDC 可以在毫秒级的延迟下处理大量的数据变更。
  5. 易集成:Flink CDC 与 Flink 生态系统紧密集成,可以方便地与其他 Flink 应用程序一起使用。
  6. 高可用性:Flink CDC 支持实时备份和恢复,确保数据的高可用性。

适用于场景?

Flink CDC 可以用于各种场景,如:

  1. 实时数据同步:将数据从一个数据库实时同步到另一个数据库。
  2. 实时数据管道:构建实时数据处理管道,处理和分析数据库中的数据。
  3. 实时数据分析:实时分析数据库中的数据,提供实时的业务洞察。
  4. 实时应用:将数据库中的数据实时应用于实时应用程序,如实时报表、实时推荐等。
  5. 实时监控:实时监控数据库中的数据,检测异常和错误。

Flink CDC 的简单用例

数据库配置

创建数据库和相应的表

创建mydb数据库,并创建user表

create database mydb;
create table user(
id bigint primary key auto_increment,
name varchar(255)
);
INSERT INTO mydb.user (name) VALUES (‘小明’);
INSERT INTO mydb.user (name) VALUES (‘小红’);

创建了一个名为 mydb 的数据库,并在其中创建了一个名为 user 的表。表中包含一个主键 id 和一个字符串类型的 name 字段。还向 user 表中插入了两条记录,分别是 '小明''小红'

开启mysql数据库bin-log日志
1.如果是服务器

在my.cnf中添加binlog配置,并重启mysql数据库

server-id = 123
log_bin = mysql-bin
binlog_format = row
binlog_row_image = full
expire_logs_days = 10
gtid_mode = on
enforce_gtid_consistency = on

已经为 MySQL 设置了一些配置参数。下面是对这些参数的解释:

  1. server-id = 123:指定服务器的唯一标识符,通常用于区分不同的数据库服务器。
  2. log_bin = mysql-bin:启用二进制日志记录,以便在数据库出现故障时可以恢复数据。
  3. binlog_format = row:指定二进制日志的记录格式。row 格式会记录每个更改行的详细信息,这对于需要事务完整性的应用程序非常有用。
  4. binlog_row_image = full:设置 row 格式的二进制日志记录行的完整信息,包括列值、注释等。这有助于提高应用程序的可恢复性。
  5. expire_logs_days = 10:设置自动清理过期二进制日志文件的天数。在这个例子中,设置为 10 天。
  6. gtid_mode = on:启用全局事务 ID 模式,这使得基于 GTID 的复制成为可能。
  7. enforce_gtid_consistency = on:强制执行 GTID 一致性,确保事务在不同的 MySQL 实例之间保持一致。
2.如果在Windows使用小皮

在小皮面板里设置,如图:

在这里插入图片描述

打开bin日志开关

搭建Flink CDC java环境

添加maven相关pom

在pom里添加相关Flink CDC依赖

org.apache.flink flink-connector-base 1.14.4 com.ververica flink-sql-connector-mysql-cdc 2.3.0 org.apache.flink flink-streaming-java_2.11 1.14.4 org.apache.flink flink-clients_2.12 1.14.4 org.apache.flink flink-runtime-web_2.12 1.14.4 org.apache.flink flink-table-runtime_2.11 1.14.4 ch.qos.logback logback-classic 1.2.11 org.slf4j slf4j-api 2.0.6

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数大数据工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年大数据全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上大数据开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以添加VX:vip204888 (备注大数据获取)
img

升的进阶课程,基本涵盖了95%以上大数据开发知识点,真正体系化!**

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以添加VX:vip204888 (备注大数据获取)
[外链图片转存中…(img-bY1aOH4M-1712551558572)]

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/你好赵伟/article/detail/616781
推荐阅读
相关标签
  

闽ICP备14008679号