当前位置:   article > 正文

数据结构--二叉树--顺序存储判断是否二叉搜索树(2022统考真题)

数据结构--二叉树--顺序存储判断是否二叉搜索树(2022统考真题)

数据结构–二叉树–顺序存储判断是否二叉搜索树(2022统考真题)

题目描述:

在这里插入图片描述

思路

二叉搜索树(Binary Search Tree,简称BST)是一种具有以下性质的二叉树:

对于树中的每个节点 N,它的左子树(如果存在)中的所有节点的值都小于 N 节点的值。
对于树中的每个节点 N,它的右子树(如果存在)中的所有节点的值都大于 N 节点的值。
左子树和右子树也分别是二叉搜索树。
为了验证给定的数组是否构成一个有效的二叉搜索树,我们需要确保每个节点的值满足上述性质。特别是要保证在每个节点的值满足其左右子节点的值的约束。

从后向前的去验证,节点 N 与 它的父亲是否满足上述的条件。

代码

#include <iostream>
#define MAX_SIZE 100
using namespace std;
typedef struct {
	int sqBitNode[MAX_SIZE];
	int ElemNum;
} SqBiTree;
int lmax[MAX_SIZE], rmin[MAX_SIZE]; 
bool check(SqBiTree tree)
{
	for (int i = 0; i < tree.ElemNum; i++)
		lmax[i] = tree.sqBitNode[i], rmin[i] = tree.sqBitNode[i];
	for  (int i = tree.ElemNum - 1; i ;i--)
	{
		if (tree.sqBitNode[i] == -1) continue;
		int fa = (i - 1) / 2;
		if (i % 2 == 1 && tree.sqBitNode[fa] > lmax[i]) // fa 与 左孩子
			lmax[i] = tree.sqBitNode[fa];
		else if (i % 2 == 0 && tree.sqBitNode[fa] < rmin[i]) // fa 与 右孩子
			rmin[i] = tree.sqBitNode[fa];
		else 	return false;
	}
	return true;
}
int main()
{
	
	SqBiTree tree;
	cin >> tree.ElemNum;	
	for (int i = 0; i < tree.ElemNum; i++)
		cin >> tree.sqBitNode[i];
	cout << (check(tree) == 1 ? "tree" : "false") << '\n';
} 
/*
10 40 25 60 -1 30 -1 80 -1 -1 27

11 40 50 60 -1 30 -1 -1 -1 -1 -1 35
*/
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/你好赵伟/article/detail/621914
推荐阅读
相关标签
  

闽ICP备14008679号