赞
踩
分为两种:有参注意力和无参注意力。
eg:
有参:
import torch from torch import nn class EMA(nn.Module): def __init__(self, channels, factor=8): super(EMA, self).__init__() self.groups = factor assert channels // self.groups > 0 self.softmax = nn.Softmax(-1) self.agp = nn.AdaptiveAvgPool2d((1, 1)) self.pool_h = nn.AdaptiveAvgPool2d((None, 1)) self.pool_w = nn.AdaptiveAvgPool2d((1, None)) self.gn = nn.GroupNorm(channels // self.groups, channels // self.groups) self.conv1x1 = nn.Conv2d(channels // self.groups, channels // self.groups, kernel_size=1, stride=1, padding=0) self.conv3x3 = nn.Conv2d(channels // self.groups, channels // self.groups, kernel_size=3, stride=1, padding=1) def forward(self, x): b, c, h, w = x.size() group_x = x.reshape(b * self.groups, -1, h, w) # b*g,c//g,h,w x_h = self.pool_h(group_x) x_w = self.pool_w(group_x).permute(0, 1, 3, 2) hw = self.conv1x1(torch.cat([x_h, x_w], dim=2)) x_h, x_w = torch.split(hw, [h, w], dim=2) x1 = self.gn(group_x * x_h.sigmoid() * x_w.permute(0, 1, 3, 2).sigmoid()) x2 = self.conv3x3(group_x) x11 = self.softmax(self.agp(x1).reshape(b * self.groups, -1, 1).permute(0, 2, 1)) x12 = x2.reshape(b * self.groups, c // self.groups, -1) # b*g, c//g, hw x21 = self.softmax(self.agp(x2).reshape(b * self.groups, -1, 1).permute(0, 2, 1)) x22 = x1.reshape(b * self.groups, c // self.groups, -1) # b*g, c//g, hw weights = (torch.matmul(x11, x12) + torch.matmul(x21, x22)).reshape(b * self.groups, 1, h, w) return (group_x * weights.sigmoid()).reshape(b, c, h, w)
无参:
import torch import torch.nn as nn class SimAM(torch.nn.Module): def __init__(self, e_lambda=1e-4): super(SimAM, self).__init__() self.activaton = nn.Sigmoid() self.e_lambda = e_lambda def __repr__(self): s = self.__class__.__name__ + '(' s += ('lambda=%f)' % self.e_lambda) return s @staticmethod def get_module_name(): return "simam" def forward(self, x): b, c, h, w = x.size() n = w * h - 1 x_minus_mu_square = (x - x.mean(dim=[2, 3], keepdim=True)).pow(2) y = x_minus_mu_square / (4 * (x_minus_mu_square.sum(dim=[2, 3], keepdim=True) / n + self.e_lambda)) + 0.5 return x * self.activaton(y)
1、在nn文件夹下新建attention.py文件,把上面俩代码放进去
2、在tasks.py文件里面导入俩函数
3、在解析函数里面添加解析代码
c1:上一层的输出通道数,也是这一层的输入通道数
C2:该层的输出通道数,即将成为下一层的输入通道数
args[]:每个带参数的模块,都要指定这个东西,这个包括[c1,c2,剩下的参数],然后传给该层的模块,有些模块不需要额外参数,就只传一个输出通道数给这一层就行
切记!!!C2是这一层的输出通道数,而args[]里的输入输出通道数是给模块的
4、新建模型配置文件
4、快速验证配置文件,新建main.py文件,然后运行
from ultralytics import YOLO
if __name__=='__main__':
print('11111111111')
model=YOLO('/home/xxxxxxxx/v8/yolov8-main/ultralytics/models/v8/yolov8-att.yaml')
5、如果想修改这个参数,传进来
6、配置文件改也行,传进去
7、总结:放进attention.py,接着在tasks.py里注册,接着解析函数添加(有通道无通道),模型配置文件替换
8、第二种:在4、6、9后面加
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。