赞
踩
给你一个整数数组 nums 和一个整数 k ,请你返回其中出现频率前 k 高的元素。你可以按 任意顺序 返回答案。
进阶:你所设计算法的时间复杂度 必须 优于 O(n log n) ,其中 n 是数组大小。
在这里,我们可以利用堆的思想:建立一个小顶堆,然后遍历「出现次数数组」:
如果堆的元素个数小于 k,就可以直接插入堆中。
如果堆的元素个数等于 k,则检查堆顶与当前出现次数的大小。如果堆顶更大,说明至少有 k 个数字的出现次数比当前值大,故舍弃当前值;否则,就弹出堆顶,并将当前值插入堆中。
遍历完成后,堆中的元素就代表了「出现次数数组」中前 k 大的值。
class Solution { public int[] topKFrequent(int[] nums, int k) { // 使用字典,统计每个元素出现的次数,元素为键,元素出现的次数为值 HashMap<Integer,Integer> map = new HashMap(); for(int num : nums){ if (map.containsKey(num)) { map.put(num, map.get(num) + 1); } else { map.put(num, 1); } } // 遍历map,用最小堆保存频率最大的k个元素 PriorityQueue<Integer> pq = new PriorityQueue<>(new Comparator<Integer>() { @Override public int compare(Integer a, Integer b) { return map.get(a) - map.get(b); } }); for (Integer key : map.keySet()) { if (pq.size() < k) { pq.add(key); } else if (map.get(key) > map.get(pq.peek())) { pq.remove(); pq.add(key); } } // 取出最小堆中的元素 int[] res = new int[k]; int i=0; while (!pq.isEmpty()) { res[i++]=pq.remove(); } return res; } }
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。