赞
踩
先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7
深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年最新Python全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Python知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
如果你需要这些资料,可以添加V获取:vip1024c (备注Python)
6、tqdm
pip install tqdm
| 模型简介 | 模型名称 | 推荐场景 | 检测模型 | 方向分类器 | 识别模型 |
| — | — | — | — | — | — |
| 中英文超轻量PP-OCRv2模型(13.0M) | ch_PP-OCRv2_xx | 移动端&服务器端 | 推理模型 / 训练模型 | 推理模型 / 预训练模型 | 推理模型 / 训练模型 |
| 中英文超轻量PP-OCR mobile模型(9.4M) | ch_ppocr_mobile_v2.0_xx | 移动端&服务器端 | 推理模型 / 预训练模型 | 推理模型 / 预训练模型 | 推理模型 / 预训练模型 |
| 中英文通用PP-OCR server模型(143.4M) | ch_ppocr_server_v2.0_xx | 服务器端 | 推理模型 / 预训练模型 | 推理模型 / 预训练模型 | 推理模型 / 预训练模型 |
选择上面的一组模型放入到inference文件夹中,注意:是一组,包括:监测模型、方向分类器、识别模型。如下:
PaddleOCR-release-2.4
└─inference
├─ch_PP-OCRv2_det_infer #检测模型
│ ├─inference.pdiparams
│ ├─inference.pdiparams.info
│ └─inference.pdmodel
├─ch_PP-OCRv2_rec_infer #识别模型
│ ├─inference.pdiparams
│ ├─inference.pdiparams.info
│ └─inference.pdmodel
└─cls #方向分类器
├─inference.pdiparams
├─inference.pdiparams.info
└─inference.pdmodel
将待检测的图片放在./doc/imgs/文件夹下面,然后执行命令:
python tools/infer/predict_system.py --image_dir=“./doc/imgs/0.jpg” --det_model_dir=“./inference/ch_PP-OCRv2_det_infer/” --cls_model_dir=“./inference/cls/” --rec_model_dir=“./inference/ch_PP-OCRv2_rec_infer/” --use_angle_cls=true
然后在inference_results文件夹中查看结果,例如:
如果能看到结果就说明环境是ok的。
更多的命令,如下:
python3 tools/infer/pred
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。