赞
踩
numpy.where() 的两种用法:
1、numpy.where(condition, x, y)
满足条件(condition),输出x,不满足输出y。
import numpy as np A = np.arange(-5, 10) print(A) #[-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9] B = np.where(A, 1, -1) #0为False,所以0变为-1 print(B) #[ 1 1 1 1 1 -1 1 1 1 1 1 1 1 1 1] C = np.where(A > 2, 1, -1) print(C) #[-1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1] np.random.seed(1) arr = np.random.randn(4, 4) #正态分布的数据 print(arr) ''' [[ 1.62434536 -0.61175641 -0.52817175 -1.07296862] [ 0.86540763 -2.3015387 1.74481176 -0.7612069 ] [ 0.3190391 -0.24937038 1.46210794 -2.06014071] [-0.3224172 -0.38405435 1.13376944 -1.09989127]] ''' D = np.where(arr > 0, 1, -1) #将所有正值替换为1,所有负值替换为-1 print(D) ''' [[ 1 -1 -1 -1] [ 1 -1 1 -1] [ 1 -1 1 -1] [-1 -1 1 -1]] ''' E = np.where(arr > 0, 1, arr) #只将所有正值替换为1 print(E) ''' [[ 1. -0.61175641 -0.52817175 -1.07296862] [ 1. -2.3015387 1. -0.7612069 ] [ 1. -0.24937038 1. -2.06014071] [-0.3224172 -0.38405435 1. -1.09989127]] '''
2、numpy.where(condition)
只有条件 (condition),没有x和y,输出满足条件 (即非0) 元素的索引 (等价于numpy.nonzero)。这里的索引以tuple的形式给出,通常原数组有多少维,输出的tuple中就包含几个数组,分别对应符合条件元素的各维索引。
import numpy as np
A = np.array([1, 3, 5, 7, 9, 11])
B = np.where(A>3) #返回索引
print(B)
#(array([2, 3, 4, 5]),)
C = A[np.where(A>3)] #等价于A[A>3]
print(C)
#[ 5 7 9 11]
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。