赞
踩
-- 创建 orders 表
DROP TABLE IF EXISTS orders;
CREATE TABLE orders (
order_id INT,
user_id INT,
product_id INT,
order_date STRING
);
-- 插入 orders 数据
INSERT INTO orders VALUES
(101, 1, 1001, '2023-01-01'),
(102, 1, 1002, '2023-01-02'),
(103, 2, 1001, '2023-01-03'),
(104, 3, 1001, '2023-01-04'),
(105, 3, 1003, '2023-01-05'),
(106, 4, 1002, '2023-01-06'),
(107, 5, 1001, '2023-01-07'),
(108, 5, 1002, '2023-01-08'),
(109, 6, 1001, '2023-01-09'),
(110, 6, 1003, '2023-01-10'),
(111, 7, 1001, '2023-01-11'),
(112, 7, 1002, '2023-01-12'),
(113, 7, 1003, '2023-01-13'),
(114, 8, 1001, '2023-01-14'),
(115, 8, 1002, '2023-01-15'),
(116, 8, 1003, '2023-01-16'),
(117, 8, 1004, '2023-01-17'),
(118, 9, 1001, '2023-01-18'),
(119, 9, 1002, '2023-01-19'),
(120, 9, 1003, '2023-01-20'),
(121, 10, 1004, '2023-01-21'),
(122, 10, 1005, '2023-01-22'),
(123, 2, 1001, '2023-02-03'),
(124, 3, 1001, '2023-02-04'),
(125, 3, 1003, '2023-02-05'),
(126, 4, 1002, '2023-02-06'),
(127, 5, 1001, '2023-02-07'),
(128, 5, 1002, '2023-02-08'),
(129, 6, 1001, '2023-02-09'),
(130, 6, 1003, '2023-02-10'),
(131, 6, 1002, '2023-02-11'),
(132, 8, 1002, '2023-02-14'),
(133, 8, 1003, '2023-02-17'),
(134, 9, 1002, '2023-02-18'),
(135, 9, 1001, '2023-02-19'),
(136, 9, 1001, '2023-02-20');
-- 创建 categories 表
DROP TABLE IF EXISTS categories;
CREATE TABLE categories (
category_id INT,
category_name STRING
);
-- 插入 categories 数据
INSERT INTO categories VALUES
(1, 'Electronics'),
(2, 'Books'),
(3, 'Clothing'),
(4, 'Home'),
(5, 'Beauty');
-- 创建 products 表
DROP TABLE IF EXISTS products;
CREATE TABLE products (
product_id INT,
tag STRING,
category_id INT
);
-- 插入 products 数据
INSERT INTO products VALUES
(1001, 'Electronics', 1),
(1002, 'Books', 2),
(1003, 'Clothing', 3),
(1004, 'Home', 4),
(1005, 'Beauty', 5);
统计每月用户购买商品的种类分布,每个用户当月的下单次数至少达到 3
次及以上才进行统计。
结果示例:
category_name | order_month | category_month_cnt |
---|---|---|
Books | 2023-01 | 3 |
Clothing | 2023-01 | 3 |
Electronics | 2023-01 | 3 |
Home | 2023-01 | 1 |
Books | 2023-02 | 2 |
Clothing | 2023-02 | 1 |
Electronics | 2023-02 | 3 |
结果按 order_month
、category_name 升序排列。
其中:
category_name
表示商品种类名称;order_month
表示统计的年月;category_month_cnt
表示该种类商品每月的销售数量。select
category_name,
date_format(order_date,"yyyy-MM") order_month,
count(1) category_month_cnt
from
orders o
join
products p
on
o.product_id = p.product_id
join
categories c
on
p.category_id = c.category_id
where
concat(o.user_id,date_format(order_date,"yyyy-MM")) in
(select
concat(user_id,date_format(order_date,"yyyy-MM"))
from
orders
group by
user_id,date_format(order_date,"yyyy-MM")
having
count(order_id) >= 3)
group by
c.category_id,c.category_name,date_format(order_date,"yyyy-MM")
order by
order_month,category_name;
输出结果如下:
本题的要点在于,如何筛选出我们想要的数据。
需求说明中,要求我们统计每月各个商品种类的销售分布数据,前提是,只有当用户在当月的下单次数 >=3
时,才被作为有效数据进行统计。
所以,我们需要先过滤出每个月份符合这个条件的用户ID,由用户ID和月份构建联合键,完成过滤后,再去进行统计。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。