当前位置:   article > 正文

k-means聚类算法详解_kmeans算法_应用k-means算法解决聚类问题

应用k-means算法解决聚类问题

聚类算法是先有数据在来分类。

一. 算法步骤

1、首先确定一个k值,即我们希望将数据集经过聚类得到k个集合。

2、从数据集中随机选择k个数据点作为质心。

3、对数据集中每一个点,计算其与每一个质心的距离(如欧式距离),离哪个质心近,就划分到那个质心所属的集合。

4、把所有数据归好集合后,一共有k个集合。然后重新计算每个集合的质心。

5、如果新计算出来的质心和原来的质心之间的距离小于某一个设置的阈值(表示重新计算的质心的位置变化不大,趋于稳定,或者说收敛),我们可以认为聚类已经达到期望的结果,算法终止。

6、如果新质心和原质心距离变化很大,需要迭代3~5步骤。
k-mean算法.gif

二. 算法优缺点

优点:

1、原理比较简单,实现也是很容易,收敛速度快。

2、当结果簇是密集的,而簇与簇之间区别明显时, 它的效果较好。

3、主要需要调参的参数仅仅是簇数k。

缺点:

1、K值需要预先给定,很多情况下K值的估计是非常困难的。

2、K-Means算法对初始选取的质心点是敏感的,不同的随机种子点得到的聚类结果完全不同 ,对结果影响很大。

3、采用迭代方法,可能只能得到局部的最优解,而无法得到全局的最优解。

三. 算法实现

算法使用sklearn实现:

step 1 创建数据集合

首先我们创建一个由500个样本构成的数据集合,我们首先将自定义划分为四类。

from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt
#自己创建一个大小为500的数据集,由两维特征构成
X, y = make_blobs(n_samples=500,n_features=2,centers=4,random_state=1)

  • 1
  • 2
  • 3
  • 4
  • 5

具体长这样:

color = ["red","pink","orange","gray"]
fig, ax1 = plt.subplots(1)
for i in range(4):
    ax1.scatter(X[y==i, 0], X[y==i, 1]
                ,marker='o' #点的形状
                ,s=8 #点的大小
                ,c=color[i]
                )
plt.show()

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

请添加图片描述

setp 2 基于分布进行聚类<
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/你好赵伟/article/detail/715913
推荐阅读
相关标签
  

闽ICP备14008679号