赞
踩
题意: 有 n 个不同的整数,每次操作选两个数 x 与 y ,新增一个数为 x*2-y; 试问是否能在经过多次操作后得到目标数字 k?
思路:
代码实现:
#include<bits/stdc++.h> #define endl '\n' #define null NULL #define ll long long #define int long long #define pii pair<int, int> #define lowbit(x) (x &(-x)) #define ls(x) x<<1 #define rs(x) (x<<1+1) #define me(ar) memset(ar, 0, sizeof ar) #define mem(ar,num) memset(ar, num, sizeof ar) #define rp(i, n) for(int i = 0, i < n; i ++) #define rep(i, a, n) for(int i = a; i <= n; i ++) #define pre(i, n, a) for(int i = n; i >= a; i --) #define IOS ios::sync_with_stdio(0); cin.tie(0);cout.tie(0); const int way[4][2] = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}}; using namespace std; const int inf = 0x7fffffff; const double PI = acos(-1.0); const double eps = 1e-6; const ll mod = 1e9 + 7; const int N = 2e5 + 5; int t, n, k, a[N]; signed main() { IOS; cin >> t; while(t --){ cin >> n >> k; int g = 0; for(int i = 1; i <= n; i ++){ cin >> a[i]; if(i>1) g = __gcd(g, a[i]-a[i-1]); } cout << ((k-a[1])%g ? "NO":"YES") << endl; } return 0; }
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。