赞
踩
(一)频域低通滤波
(二)频域高通滤波
import numpy as np from PIL import Image import matplotlib.pyplot as plt """ (一)频域低通滤波 产生如图所示图象 f1(x,y)(64×64 大小,中间亮条宽16,高 40,居中,暗处=0,亮处=255) 产生实验四中的白条图像。 设计不同截止频率的理想低通滤波器、Butterworth低通滤波器,对其进行频域增强。 观察频域滤波效果,并解释之。 """ def pro_11(): def ideal_low_filter(lr, cr, cc, img): tmp = np.zeros((img.shape[0], img.shape[1])) for i in range(img.shape[0]): for j in range(img.shape[1]): tmp[i, j] = (1 if np.sqrt((i - cr) ** 2 + (j - cc) ** 2) <= lr else 0) return tmp # 产生白条图像 im_arr = np.zeros((640, 640)) for i in range(im_arr.shape[0]): for j in range(im_arr.shape[1]): if 120 < i < 520 and 240 < j < 400: im_arr[i, j] = 255 im_ft2 = np.fft.fft2(np.array(im_arr)) # 白条图二维傅里叶变换矩阵 im_ft2_shift = np.fft.fftshift(im_ft2) r, c = im_arr.shape[0], im_arr.shape[1] cr, cc = r // 2, c // 2 # 频谱中心 # 理想滤波器 ideal_filter1 = ideal_low_filter(10, cr, cc, im_ft2_shift) ideal_filter2 = ideal_low_filter(30, cr, cc, im_ft2_shift) # 求经理想低通滤波器后的图像 tmp = im_ft2_shift * ideal_filter1 irreversed_im_ft2 = np.fft.ifft2(tmp) tmp2 = im_ft2_shift * ideal_filter2 irreversed_im_ft22 = np.fft.ifft2(tmp2) plt.figure(figsize=(13, 13)) plt.subplot(221) plt.imshow(Image.fromarray(np.abs(im_arr))) plt.subplot(223) plt.imshow(Image.fromarray(np.abs(im_ft2_shift))) plt.subplot(222) plt.title("lr=10") plt.imshow(Image.fromarray(np.abs(irreversed_im_ft2))) plt.subplot(224) plt.title("lr=30") plt.imshow(Image.fromarray(np.abs(irreversed_im_ft22))) plt.show() def pro_12(): def butterworth(lr, cr, cc, n, img): tmp = np.zeros((img.shape[0], img.shape[1])) for i in range(img.shape[0]): for j in range(img.shape[1]): tmp[i, j] = 1 / (1 + np.sqrt((i - cr) ** 2 + (j - cc) ** 2) / lr) ** (2 * n) return tmp # 产生白条图像 im_arr = np.zeros((640, 640)) for i in range(im_arr.shape[0]): for j in range(im_arr.shape[1]): if 120 < i < 520 and 240 < j < 400: im_arr[i, j] = 255 im_ft2 = np.fft.fft2(np.array(im_arr)) # 白条图二维傅里叶变换矩阵 im_ft2_shift = np.fft.fftshift(im_ft2) r, c = im_arr.shape[0], im_arr.shape[1] cr, cc = r // 2, c // 2 # 频谱中心 # 理想滤波器 butterworth1 = butterworth(10, cr, cc, 2, im_arr) butterworth2 = butterworth(30, cr, cc, 2, im_arr) # 求经理想低通滤波器后的图像 tmp = im_ft2_shift * butterworth1 irreversed_im_ft2 = np.fft.ifft2(tmp) tmp2 = im_ft2_shift * butterworth2 irreversed_im_ft22 = np.fft.ifft2(tmp2) plt.figure(figsize=(13, 13)) plt.subplot(221) plt.imshow(Image.fromarray(np.abs(im_arr))) plt.subplot(223) plt.imshow(Image.fromarray(np.abs(im_ft2_shift))) plt.subplot(222) plt.title("lr=10") plt.imshow(Image.fromarray(np.abs(irreversed_im_ft2))) plt.subplot(224) plt.title("lr=30") plt.imshow(Image.fromarray(np.abs(irreversed_im_ft22))) plt.show() def pro_12(): def ideal_low_filter(lr, cr, cc, img): tmp = np.zeros((img.shape[0], img.shape[1])) for i in range(img.shape[0]): for j in range(img.shape[1]): tmp[i, j] = (1 if np.sqrt((i - cr) ** 2 + (j - cc) ** 2) <= lr else 0) return tmp def butterworth(lr, cr, cc, n, img): tmp = np.zeros((img.shape[0], img.shape[1])) for i in range(img.shape[0]): for j in range(img.shape[1]): tmp[i, j] = 1 / (1 + np.sqrt((i - cr) ** 2 + (j - cc) ** 2) / lr) ** (2 * n) return tmp def gauss_noise(img, sigma): temp_img = np.float64(np.copy(img)) h = temp_img.shape[0] w = temp_img.shape[1] noise = np.random.randn(h, w) * sigma noisy_img = np.zeros(temp_img.shape, np.float64) if len(temp_img.shape) == 2: noisy_img = temp_img + noise else: noisy_img[:, :, 0] = temp_img[:, :, 0] + noise noisy_img[:, :, 1] = temp_img[:, :, 1] + noise noisy_img[:, :, 2] = temp_img[:, :, 2] + noise # noisy_img = noisy_img.astype(np.uint8) return noisy_img lena = np.array(Image.open("lena_gray_512.tif")) noise_lena = gauss_noise(lena, 25) noise_lena_fft2 = np.fft.fft2(noise_lena) noise_lena_fft2_shift = np.fft.fftshift(noise_lena_fft2) r, c = lena.shape[0], lena.shape[1] cr, cc = r // 2, c // 2 # 频谱中心 butterworth1 = butterworth(30, cr, cc, 2, lena) butterworth2 = butterworth(50, cr, cc, 2, lena) ideal_filter1 = ideal_low_filter(10, cr, cc, noise_lena_fft2_shift) ideal_filter2 = ideal_low_filter(30, cr, cc, noise_lena_fft2_shift) btmp1 = noise_lena_fft2_shift * butterworth1 blena_ift21 = np.fft.ifft2(btmp1) btmp2 = noise_lena_fft2_shift * butterworth2 blena_ift22 = np.fft.ifft2(btmp2) itmp1 = noise_lena_fft2_shift * ideal_filter1 ilena_ift21 = np.fft.ifft2(itmp1) itmp2 = noise_lena_fft2_shift * ideal_filter2 ilena_ift22 = np.fft.ifft2(itmp2) plt.figure(figsize=(13, 13)) plt.subplot(221) plt.title("Butterworth Filter: lr=30/100") plt.imshow(Image.fromarray(np.abs(blena_ift21))) plt.subplot(223) plt.imshow(Image.fromarray(np.abs(blena_ift22))) plt.subplot(222) plt.title("Ideal Filter: lr=10/30") plt.imshow(Image.fromarray(np.abs(ilena_ift21))) plt.subplot(224) plt.imshow(Image.fromarray(np.abs(ilena_ift22))) plt.show() """ (二)频域高通滤波 1. 设计不同截止频率的理想高通滤波器、Butterworth高通滤波器,对上述白条图像进行频域增强。观察频域滤波效果,并解释之。 2. 设计不同截止频率的理想高通滤波器、Butterworth高通滤波器,对含高斯噪声的lena图像进行频域增强。观察频域滤波效果,并解释之。 """ def pro_2(): def ideal_high_filter(lr, cr, cc, img): tmp = np.zeros((img.shape[0], img.shape[1])) for i in range(img.shape[0]): for j in range(img.shape[1]): tmp[i, j] = (0 if np.sqrt((i - cr) ** 2 + (j - cc) ** 2) <= lr else 1) return tmp def butterworth_high(lr, cr, cc, n, img): tmp = np.zeros((img.shape[0], img.shape[1])) for i in range(img.shape[0]): for j in range(img.shape[1]): tmp[i, j] = 1 / (1 + lr / np.sqrt((i - cr) ** 2 + (j - cc) ** 2)) ** (2 * n) return tmp def gauss_noise(img, sigma): temp_img = np.float64(np.copy(img)) h = temp_img.shape[0] w = temp_img.shape[1] noise = np.random.randn(h, w) * sigma noisy_img = np.zeros(temp_img.shape, np.float64) if len(temp_img.shape) == 2: noisy_img = temp_img + noise else: noisy_img[:, :, 0] = temp_img[:, :, 0] + noise noisy_img[:, :, 1] = temp_img[:, :, 1] + noise noisy_img[:, :, 2] = temp_img[:, :, 2] + noise # noisy_img = noisy_img.astype(np.uint8) return noisy_img def lena_proceed(): lena = np.array(Image.open("lena_gray_512.tif")) noise_lena = gauss_noise(lena, 25) noise_lena_fft2 = np.fft.fft2(noise_lena) noise_lena_fft2_shift = np.fft.fftshift(noise_lena_fft2) r, c = lena.shape[0], lena.shape[1] cr, cc = r // 2, c // 2 # 频谱中心 butterworth1 = butterworth_high(10, cr, cc, 1, lena) butterworth2 = butterworth_high(5, cr, cc, 1, lena) ideal_filter1 = ideal_high_filter(10, cr, cc, noise_lena_fft2_shift) ideal_filter2 = ideal_high_filter(30, cr, cc, noise_lena_fft2_shift) btmp1 = noise_lena_fft2_shift * butterworth1 blena_ift21 = np.fft.ifft2(btmp1) btmp2 = noise_lena_fft2_shift * butterworth2 blena_ift22 = np.fft.ifft2(btmp2) itmp1 = noise_lena_fft2_shift * ideal_filter1 ilena_ift21 = np.fft.ifft2(itmp1) itmp2 = noise_lena_fft2_shift * ideal_filter2 ilena_ift22 = np.fft.ifft2(itmp2) plt.figure(figsize=(13, 13)) plt.subplot(221) plt.title("Butterworth Filter: lr=30/5") plt.imshow(Image.fromarray(np.abs(blena_ift21))) plt.subplot(223) plt.imshow(Image.fromarray(np.abs(blena_ift22))) plt.subplot(222) plt.title("Ideal Filter: lr=10/30") plt.imshow(Image.fromarray(np.abs(ilena_ift21))) plt.subplot(224) plt.imshow(Image.fromarray(np.abs(ilena_ift22))) plt.show() def white_bar_proceed(): # 产生白条图像 im_arr = np.zeros((640, 640)) for i in range(im_arr.shape[0]): for j in range(im_arr.shape[1]): if 120 < i < 520 and 240 < j < 400: im_arr[i, j] = 255 im_ft2 = np.fft.fft2(np.array(im_arr)) # 白条图二维傅里叶变换矩阵 im_ft2_shift = np.fft.fftshift(im_ft2) r, c = im_arr.shape[0], im_arr.shape[1] cr, cc = r // 2, c // 2 # 频谱中心 butterworth1 = butterworth_high(30, cr, cc, 1, im_arr) butterworth2 = butterworth_high(5, cr, cc, 1, im_arr) ideal_filter1 = ideal_high_filter(10, cr, cc, im_ft2_shift) ideal_filter2 = ideal_high_filter(30, cr, cc, im_ft2_shift) btmp1 = im_ft2_shift * butterworth1 blena_ift21 = np.fft.ifft2(btmp1) btmp2 = im_ft2_shift * butterworth2 blena_ift22 = np.fft.ifft2(btmp2) itmp1 = im_ft2_shift * ideal_filter1 ilena_ift21 = np.fft.ifft2(itmp1) itmp2 = im_ft2_shift * ideal_filter2 ilena_ift22 = np.fft.ifft2(itmp2) plt.figure(figsize=(13, 13)) plt.subplot(221) plt.title("Butterworth Filter: lr=30/5") plt.imshow(Image.fromarray(np.abs(blena_ift21))) plt.subplot(223) plt.imshow(Image.fromarray(np.abs(blena_ift22))) plt.subplot(222) plt.title("Ideal Filter: lr=10/30") plt.imshow(Image.fromarray(np.abs(ilena_ift21))) plt.subplot(224) plt.imshow(Image.fromarray(np.abs(ilena_ift22))) plt.show() lena_proceed() white_bar_proceed() if __name__ == '__main__': pro_11() pro_12() pro_2()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。