当前位置:   article > 正文

OpenCV实现图像基础频率域滤波_opencv统计图像高频

opencv统计图像高频

写在前面: 刚开始接触数字图像处理频率域滤波时,很是陌生,感觉这个技术使用范围很窄,不如空域直接处理来的实在,最近看书发现有些情况又不得不在频率域中进行操作,个人感觉图像的复原与重建就是最大的应用点。特此实现一些基本的频率域滤波操作为后学习打下基础…

1. 频率域滤波步骤

在这里插入图片描述
前处理: 包括对图像边界填充,使之达到OpenCV傅里叶变换最佳尺寸,然后就是将 f ( x , y ) f(x,y) f(x,y)乘以 − 1 ( x + y ) -1^{(x+y)} 1(x+y),使傅里叶变换位于填充后图像大小的频率矩形的中心。

后处理: 包括从反变换回来的图的左上象限提取一个大小为MXN(原图尺寸)的区域,得到与输入图像大小相同的滤波后的结果 g ( x , y ) g(x,y) g(x,y)

具体操作步骤详见《数字图像处理》第4章。

2.总结

  1. H ( u , v ) H(u,v) H(u,v)是实函数,即虚部为0。
  2. G ( u , v ) G(u,v) G(u,v) = H ( u , v ) ⋅ F ( u , v ) H(u,v)\cdot F(u,v) H(u,v)F(u,v)= H ( u , v ) ⋅ ( R ( u , v ) + J I ( u , v ) ) H(u,v)\cdot (R(u,v)+JI(u,v)) H(u,v)(R(u,v)+JI(u,v)) = H ( u , v ) ⋅ R ( u , v ) + H ( u , v ) ⋅ J I ( u , v ) H(u,v)\cdot R(u,v)+H(u,v)\cdot JI(u,v) H(u,v)R(u,v)+H(u,v)JI(u,v)
  3. 反变换获得图像 g ( x , y ) g(x,y) g(x,y)取实部即可。
  4. 在进行高通滤波时,滤波后的图像中会含有负值,这时直接将像素值归一化到[0, 1],得到的结果同时标定了正值和负值,图像呈现深灰色,虽然也对,但是为了呈现另一种效果(底色为黑)我将负值进行了手动截断为0,然后在进行归一化。

3.程序实现

//***************************************tool***************************************//


//function:	使傅里叶频谱中心化
void fftshift(const cv::Mat& src, cv::Mat& dst)
{
	dst = src.clone();
	if (dst.type() != CV_32F) dst.convertTo(dst, CV_32F);
	
	for (int r = 0; r < dst.rows; ++r)
	{
		for (int c = 0; c < dst.cols; ++c)
		{
			if ((r + c) % 2 != 0)	//r + c 不为偶数,当前点变为负数
				dst.at<float>(r, c) = -dst.at<float>(r, c);
		}
	}
}


//function:	创建最佳傅里叶变换尺寸
cv::Size Make_BetterSize(const cv::Mat src)
{
	int w = cv::getOptimalDFTSize(src.cols);
	int h = cv::getOptimalDFTSize(src.rows);

	//width, height
	return Size(w, h);
}


//function:	将图像中负数截断为0
//opencv中应该有现成的工具函数,需要查一下文档
void MinusToZero(const cv::Mat& src, cv::Mat& dst)
{
	dst = src.clone();
	
	for (int r = 0; r < dst.rows; ++r)
	{
		for (int c = 0; c < dst.cols; ++c)
		{
			if (dst.at<float>(r, c) < 0)
				dst.at<float>(r, c) = 0.0;
		}
	}
}


//*****************************calculate filtering kernel*****************************//


//function:	创建理想低通滤波器
void calcILPF(const cv::Mat& src, int D0, Mat& dst)
{
	Size filterSize = Make_BetterSize(src);
	Mat H(filterSize, CV_32FC1, Scalar::all(0));

	int cy = H.rows / 2;
	int cx = H.cols / 2;

	for (int y = 0; y < H.rows; ++y)
	{
		float* H_data = H.ptr<float>(y);
		for (int x = 0; x < H.cols; ++x)
		{
			double d = sqrt(pow(y - cy, 2) + pow(x - cx, 2));
			//当距离小于截止频率时,设置为1
			if (d <= (double)D0)
				H_data[x] = 1.f;
		}
	}
	//改为双通道图像便于与F(u,v)相乘
	Mat planes[] = { H.clone(), H.clone() };
	Mat complexH;
	merge(planes, 2, complexH);

	complexH.copyTo(dst);
}


//function:	巴特沃斯低通滤波器
void calcButterWorth(const cv::Mat& src, int D0, Mat& dst, float n)
{
	Size filterSize = Make_BetterSize(src);
	cv::Mat H = cv::Mat::zeros(filterSize, CV_32FC1);

	int cy = H.rows / 2;
	int cx = H.cols / 2;

	for (int y = 0; y < H.rows; ++y)
	{
		float* H_data = H.ptr<float>(y);		//指向第y行首个元素的指针
		for (int x = 0; x < H.cols; ++x)
		{
			double d = sqrt(pow(y - cy, 2) + pow(x - cx, 2));
			//根据巴特沃斯低通滤波器计算H(u, v)
			H_data[x] = 1.0 / (1 + pow(d / D0, 2 * n));
		}
	}
	
	Mat planes[] = { H.clone(), H.clone() };
	Mat complexH;
	merge(planes, 2, complexH);

	complexH.copyTo(dst);
}


//function:	创建高斯低通滤波器
void calcGLPF(const cv::Mat& src, int D0, Mat& dst)
{
	Size filterSize = Make_BetterSize(src);
	cv::Mat H = cv::Mat::zeros(filterSize, CV_32FC1);

	int cy = H.rows / 2;
	int cx = H.cols / 2;

	for (int y = 0; y < H.rows; ++y)
	{
		float* H_data = H.ptr<float>(y);		//指向第y行首个元素的指针
		for (int x = 0; x < H.cols; ++x)
		{
			double d = sqrt(pow(y - cy, 2) + pow(x - cx, 2));
			//根据gauss低通滤波器计算H(u, v)
			H_data[x] = expf((-d * d) / (2 * D0 * D0));
		}
	}

	Mat planes[] = { H.clone(), H.clone() };
	Mat complexH;
	merge(planes, 2, complexH);

	complexH.copyTo(dst);
}


//function:	创建高斯高通滤波器
//这里未做简化,只需要用1减去高斯低通核即可创建高通核
void calcGHPF(const cv::Mat& src, int D0, Mat& dst)
{
	Size filterSize = Make_BetterSize(src);
	cv::Mat H = cv::Mat::ones(filterSize, CV_32FC1);

	int cy = H.rows / 2;
	int cx = H.cols / 2;

	for (int y = 0; y < H.rows; ++y)
	{
		float* H_data = H.ptr<float>(y);		//指向第y行首个元素的指针
		for (int x = 0; x < H.cols; ++x)
		{
			double d = sqrt(pow(y - cy, 2) + pow(x - cx, 2));
			//根据gauss低通滤波器计算H(u, v)
			H_data[x] = 1.f - expf((-d * d) / (2 * D0 * D0));
		}
	}

	Mat planes[] = { H.clone(), H.clone() };
	Mat complexH;
	merge(planes, 2, complexH);

	complexH.copyTo(dst);
}

//********************************执行G(u,v) = F(u,v) * H(u,v)*******************************//


//function:		将输入图像在频率域进行处理,然后输出
//InputImage:	输入单通道图像
//H:			频率域滤波核
void frequency_filter(const cv::Mat& InputImage, const cv::Mat& H, cv::Mat& OutputImage)
{
	cv::Mat padded;
	int m = getOptimalDFTSize(InputImage.rows);
	int n = getOptimalDFTSize(InputImage.cols);
	//on the border add zero values
	cv::copyMakeBorder(InputImage, padded, 0, m - InputImage.rows, 0, n - InputImage.cols, BORDER_CONSTANT, Scalar::all(0));
	cv::Mat planes[] = { Mat_<float>(padded), cv::Mat::zeros(padded.size(), CV_32F) };
	//使傅里叶变换中心化
	fftshift(planes[0], planes[0]);
	//创建一个复数图像F(u, v)
	cv::Mat complexF;
	cv::merge(planes, 2, complexF);
	//执行傅里叶变换
	cv::dft(complexF, complexF);

	cv::Mat complexFH;
	cv::Mat ifft;
	//采用对应像素相乘G(u, v) = H(u, v) * F(u, v)
	cv::multiply(complexF, H, complexFH);
	cv::idft(complexFH, ifft, DFT_REAL_OUTPUT);
	
	//最后不要忘了再完成一次移动
	fftshift(ifft, ifft);
	//为了显示效果将负数截断为0
	MinusToZero(ifft, ifft);
	normalize(ifft, ifft, 0, 1, NORM_MINMAX);
	ifft.convertTo(ifft, CV_8UC1, 255);
	//裁剪回原尺寸输出
	ifft(cv::Rect(0, 0, InputImage.cols, InputImage.rows)).copyTo(OutputImage);
}


//*********************************main()*******************************//

int main()
{
	string path = "blurring_test.tif";

	Mat SrcImage = imread(path, IMREAD_GRAYSCALE);
	if (!SrcImage.data) {
		std::cout << "Could not open or find the image" << std::endl;
		return -1;
	}

	//高通滤波结果和高通核
	Mat H_outimg, H_kernel_H;
	//低通滤波结果和低通核
	Mat L_outimg, L_kernel_H;

	calcGLPF(SrcImage, 60, L_kernel_H);
	frequency_filter(SrcImage, L_kernel_H, L_outimg);

	calcGHPF(SrcImage, 80, H_kernel_H);
	frequency_filter(SrcImage, H_kernel_H, H_outimg);
	
	imwrite("low_blurring_test.png", L_outimg);
	imwrite("high_blurring_test.png", H_outimg);
	
	cv::waitKey(0);
	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232

4. 测试结果

原图:

原图

高斯低通滤波:

在这里插入图片描述
高斯高通滤波:

在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/你好赵伟/article/detail/78463
推荐阅读
相关标签
  

闽ICP备14008679号