赞
踩
Eigen是一个高层次的C ++库,有效支持 得到的线性代数,矩阵和矢量运算,数值分析及其相关的算法。
关于Eigen库的配置只需要在属性表包含目录中添加Eigen路径即可。
Example 1:
#include <iostream>
#include <Eigen/Dense>
void main()
{
Eigen::MatrixXd m(2, 2); //声明一个MatrixXd类型的变量,它是2*2的矩阵,未初始化
m(0, 0) = 3; //将矩阵第1个元素初始化3
m(1, 0) = 2.5; //将矩阵第3个元素初始化3
m(0, 1) = -1;
m(1, 1) = m(1, 0) + m(0, 1);
std::cout << m << std::endl;
}
Eigen头文件定义了很多类型,但对于简单的应用程序,可能只使用MatrixXd类型。 这表示任意大小的矩阵(MatrixXd中的X),其中每个条目是双精度(MatrixXd中的d)。 Eigen / Dense头文件定义了MatrixXd类型和相关类型的所有成员函数。 在这个头文件中定义的所有类和函数都在特征名称空间中。
Example 2:
#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
using namespace std;
int main()
{
MatrixXd m = MatrixXd::Random(3,3); //使用Random随机初始化3*3的矩阵
m = (m + MatrixXd::Constant(3,3,1.2)) * 50;
cout << "m =" << endl << m << endl;
VectorXd v(3); //这表示任意大小的(列)向量。
v << 1, 2, 3;
cout << "m * v =" << endl << m * v << endl;
}
#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
using namespace std;
int main()
{
Matrix3d m = Matrix3d::Random(); //使用Random随机初始化固定大小的3*3的矩阵
m = (m + Matrix3d::Constant(1.2)) * 50;
cout << "m =" << endl << m << endl; Vector3d v(1,2,3);
cout << "m * v =" << endl << m * v << endl;
}
Example 3:
#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
int main()
{
MatrixXd m(2,2);
m(0,0) = 3;
m(1,0) = 2.5;
m(0,1) = -1;
m(1,1) = m(1,0) + m(0,1);
std::cout << "Here is the matrix m:\n" << m << std::endl;
VectorXd v(2);
v(0) = 4;
v(1) = v(0) - 1;
std::cout << "Here is the vector v:\n" << v << std::endl;
}
Example 4:
Matrix3f m;
m << 1, 2, 3, 4, 5, 6, 7, 8, 9;
std::cout << m;
矩阵的当前大小可以通过rows(),cols()和size()检索。 这些方法分别返回行数,列数和系数数。 通过resize()方法调整动态大小矩阵的大小。
Example 5:
#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
int main()
{
MatrixXd m(2,5); //初始化大小2*5
m.resize(4,3); //重新调整为4*3
std::cout << "The matrix m is of size " << m.rows() << "x" << m.cols() << std::endl;
std::cout << "It has " << m.size() << " coefficients" << std::endl;
VectorXd v(2); v.resize(5);
std::cout << "The vector v is of size " << v.size() << std::endl;
std::cout << "As a matrix, v is of size " << v.rows() << "x" << v.cols() << std::endl;
}
Example 6:
MatrixXf a(2, 2);
std::cout << "a is of size " << a.rows() << "x" << a.cols() << std::endl;
MatrixXf b(3, 3);
a = b;
std::cout << "a is now of size " << a.rows() << "x" << a.cols() << std::endl;
Eigen通过通用的C ++算术运算符(例如+, - ,)或通过特殊方法(如dot(),cross()等)的重载提供矩阵/向量算术运算。对于Matrix类(矩阵和向量) 只被重载以支持线性代数运算。 例如,matrix1 matrix2表示矩阵矩阵乘积。
Example 7:
#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
int main()
{
Matrix2d a; a << 1, 2, 3, 4;
MatrixXd b(2,2);
b << 2, 3, 1, 4;
std::cout << "a + b =\n" << a + b << std::endl;
std::cout << "a - b =\n" << a - b << std::endl;
std::cout << "Doing a += b;" << std::endl;
a += b;
std::cout << "Now a =\n" << a << std::endl;
Vector3d v(1,2,3);
Vector3d w(1,0,0);
std::cout << "-v + w - v =\n" << -v + w - v << std::endl;
}
Example 8:
#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
int main()
{
Matrix2d a;
a << 1, 2, 3, 4;
Vector3d v(1,2,3);
std::cout << "a * 2.5 =\n" << a * 2.5 << std::endl;
std::cout << "0.1 * v =\n" << 0.1 * v << std::endl;
std::cout << "Doing v *= 2;" << std::endl; v *= 2;
std::cout << "Now v =\n" << v << std::endl;
}
MatrixXcf a = MatrixXcf::Random(2,2);
cout << "Here is the matrix a\n" << a << endl;
cout << "Here is the matrix a^T\n" << a.transpose() << endl;
cout << "Here is the conjugate of a\n" << a.conjugate() << endl;
cout << "Here is the matrix a^*\n" << a.adjoint() << endl;
禁止如下操作:
a = a.transpose(); // !!! do NOT do this !!!
但是可以使用如下函数:
a.transposeInPlace();
此时a被其转置替换。
#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
int main()
{
Matrix2i a;
a << 1, 2, 3, 4;
std::cout << "Here is the matrix a:\n" << a << std::endl;
a = a.transpose(); // !!! do NOT do this !!!
std::cout << "and the result of the aliasing effect:\n" << a << std::endl;
}
矩阵* 矩阵和矩阵* 向量操作
#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
int main()
{
Matrix2d mat; mat << 1, 2, 3, 4;
Vector2d u(-1,1), v(2,0);
std::cout << "Here is mat*mat:\n" << mat*mat << std::endl;
std::cout << "Here is mat*u:\n" << mat*u << std::endl;
std::cout << "Here is u^T*mat:\n" << u.transpose()*mat << std::endl;
std::cout << "Here is u^T*v:\n" << u.transpose()*v << std::endl;
std::cout << "Here is u*v^T:\n" << u*v.transpose() << std::endl;
std::cout << "Let's multiply mat by itself" << std::endl;
mat = mat*mat; std::cout << "Now mat is mat:\n" << mat << std::endl;
}
对于点积和叉乘积,需要使用dot()和cross()方法。
#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
using namespace std;
int main()
{
Vector3d v(1,2,3);
Vector3d w(0,1,2);
cout << "Dot product: " << v.dot(w) << endl;
double dp = v.adjoint()*w; // automatic conversion of the inner product to a scalar
cout << "Dot product via a matrix product: " << dp << endl;
cout << "Cross product:\n" << v.cross(w) << endl;
}
#include <iostream>
#include <Eigen/Dense>
using namespace std;
int main()
{
Eigen::Matrix2d mat;
mat << 1, 2, 3, 4;
cout << "Here is mat.sum(): " << mat.sum() << endl;
cout << "Here is mat.prod(): " << mat.prod() << endl;
cout << "Here is mat.mean(): " << mat.mean() << endl;
cout << "Here is mat.minCoeff(): " << mat.minCoeff() << endl;
cout << "Here is mat.maxCoeff(): " << mat.maxCoeff() << endl;
cout << "Here is mat.trace(): " << mat.trace() << endl;
}
数组的运算(未完待续)
Eigen最小二乘估计
最小平方求解的最好方法是使用SVD分解。 Eigen提供一个作为JacobiSVD类,它的solve()是做最小二乘解。式子为Ax=b
经过和Matlab对比。
#include <iostream>
#include <Eigen/Dense>
using namespace std;
using namespace Eigen;
int main()
{
MatrixXf A = MatrixXf::Random(3, 2);
cout << "Here is the matrix A:\n" << A << endl;
VectorXf b = VectorXf::Random(3);
cout << "Here is the right hand side b:\n" << b << endl;
cout << "The least-squares solution is:\n" << A.jacobiSvd(ComputeThinU | ComputeThinV).solve(b) << endl;
}
#include <iostream>
#include "Eigen/Dense"
using namespace Eigen;
int main()
{
MatrixXf m1(3,4); //动态矩阵,建立3行4列。
MatrixXf m2(4,3); //4行3列,依此类推。
MatrixXf m3(3,3);
Vector3f v1; //若是静态数组,则不用指定行或者列
/* 初始化 */
Matrix3d m = Matrix3d::Random();
m1 = MatrixXf::Zero(3,4); //用0矩阵初始化,要指定行列数
m2 = MatrixXf::Zero(4,3);
m3 = MatrixXf::Identity(3,3); //用单位矩阵初始化
v1 = Vector3f::Zero(); //同理,若是静态的,不用指定行列数
m1 << 1,0,0,1, //也可以以这种方式初始化
1,5,0,1,
0,0,9,1;
m2 << 1,0,0,
0,4,0,
0,0,7,
1,1,1;
//向量初始化,与矩阵类似
Vector3d v3(1,2,3);
VectorXf vx(30);
}
使用Map函数,可以实现Eigen的矩阵和c++中的数组直接转换,语法如下:
//@param MatrixType 矩阵类型
//@param MapOptions 可选参数,指的是指针是否对齐,Aligned, or Unaligned. The default is Unaligned.
//@param StrideType 可选参数,步长
/*
Map<typename MatrixType,
int MapOptions,
typename StrideType>
*/
int i;
//数组转矩阵
double *aMat = new double[20];
for(i =0;i<20;i++)
{
aMat[i] = rand()%11;
}
//静态矩阵,编译时确定维数 Matrix<double,4,5>
Eigen:Map<Matrix<double,4,5> > staMat(aMat);
//输出
for (int i = 0; i < staMat.size(); i++)
std::cout << *(staMat.data() + i) << " ";
std::cout << std::endl << std::endl;
//动态矩阵,运行时确定 MatrixXd
Map<MatrixXd> dymMat(aMat,4,5);
//输出,应该和上面一致
for (int i = 0; i < dymMat.size(); i++)
std::cout << *(dymMat.data() + i) << " ";
std::cout << std::endl << std::endl;
//Matrix中的数据存在一维数组中,默认是行优先的格式,即一行行的存
//data()返回Matrix中的指针
dymMat.data();
矩阵基础操作
eigen重载了基础的+ - * / += -= = /= 可以表示标量和矩阵或者矩阵和矩阵
#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
int main()
{
//单个取值,单个赋值
double value00 = staMat(0,0);
double value10 = staMat(1,0);
staMat(0,0) = 100;
std::cout << value00 <<value10<<std::endl;
std::cout <<staMat<<std::endl<<std::endl;
//加减乘除示例 Matrix2d 等同于 Matrix<double,2,2>
Matrix2d a;
a << 1, 2,
3, 4;
MatrixXd b(2,2);
b << 2, 3,
1, 4;
Matrix2d c = a + b;
std::cout<< c<<std::endl<<std::endl;
c = a - b;
std::cout<<c<<std::endl<<std::endl;
c = a * 2;
std::cout<<c<<std::endl<<std::endl;
c = 2.5 * a;
std::cout<<c<<std::endl<<std::endl;
c = a / 2;
std::cout<<c<<std::endl<<std::endl;
c = a * b;
std::cout<<c<<std::endl<<std::endl;
#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
using namespace std;
int main()
{
//点积、叉积(针对向量的)
Vector3d v(1,2,3);
Vector3d w(0,1,2);
std::cout<<v.dot(w)<<std::endl<<std::endl;
std::cout<<w.cross(v)<<std::endl<<std::endl;
}
*/
小矩阵(4 * 4及以下)eigen会自动优化,默认采用LU分解,效率不高
#include <iostream>
#include <Eigen/Dense>
using namespace std;
using namespace Eigen;
int main()
{
Matrix2d c;
c << 1, 2,
3, 4;
//转置、伴随
std::cout<<c<<std::endl<<std::endl;
std::cout<<"转置\n"<<c.transpose()<<std::endl<<std::endl;
std::cout<<"伴随\n"<<c.adjoint()<<std::endl<<std::endl;
//逆矩阵、行列式
std::cout << "行列式: " << c.determinant() << std::endl;
std::cout << "逆矩阵\n" << c.inverse() << std::endl;
}
#include <iostream>
#include <Eigen/Dense>
using namespace std;
using namespace Eigen;
int main()
{
//特征向量、特征值
std::cout << "Here is the matrix A:\n" << a << std::endl;
SelfAdjointEigenSolver<Matrix2d> eigensolver(a);
if (eigensolver.info() != Success) abort();
std::cout << "特征值:\n" << eigensolver.eigenvalues() << std::endl;
std::cout << "Here's a matrix whose columns are eigenvectors of A \n"
<< "corresponding to these eigenvalues:\n"
<< eigensolver.eigenvectors() << std::endl;
}
#include <iostream>
#include <Eigen/Dense>
using namespace std;
using namespace Eigen;
int main()
{
//线性方程求解 Ax =B;
Matrix4d A;
A << 2,-1,-1,1,
1,1,-2,1,
4,-6,2,-2,
3,6,-9,7;
Vector4d B(2,4,4,9);
Vector4d x = A.colPivHouseholderQr().solve(B);
Vector4d x2 = A.llt().solve(B);
Vector4d x3 = A.ldlt().solve(B);
std::cout << "The solution is:\n" << x <<"\n\n"<<x2<<"\n\n"<<x3 <<std::endl;
}
除了colPivHouseholderQr、LLT、LDLT,还有以下的函数可以求解线性方程组,请注意精度和速度: 解小矩阵(4*4)基本没有速度差别
最小二乘求解有两种方式,jacobiSvd或者colPivHouseholderQr,4*4以下的小矩阵速度没有区别,jacobiSvd可能更快,大矩阵最好用colPivHouseholderQr
#include <iostream>
#include <Eigen/Dense>
using namespace std;
using namespace Eigen;
int main()
{
MatrixXf A1 = MatrixXf::Random(3, 2);
std::cout << "Here is the matrix A:\n" << A1 << std::endl;
VectorXf b1 = VectorXf::Random(3);
std::cout << "Here is the right hand side b:\n" << b1 << std::endl;
//jacobiSvd 方式:Slow (but fast for small matrices)
std::cout << "The least-squares solution is:\n"
<< A1.jacobiSvd(ComputeThinU | ComputeThinV).solve(b1) << std::endl;
//colPivHouseholderQr方法:fast
std::cout << "The least-squares solution is:\n"
<< A1.colPivHouseholderQr().solve(b1) << std::endl;
}
稀疏矩阵的头文件包括:
#include
typedef Eigen::Triplet<double> T;
std::vector<T> tripletList;
triplets.reserve(estimation_of_entries); //estimation_of_entries是预估的条目
for(...)
{
tripletList.push_back(T(i,j,v_ij));//第 i,j个有值的位置的值
}
SparseMatrixType mat(rows,cols);
mat.setFromTriplets(tripletList.begin(), tripletList.end());
// mat is ready to go!
2.直接将已知的非0值插入
SparseMatrix<double> mat(rows,cols);
mat.reserve(VectorXi::Constant(cols,6));
for(...)
{
// i,j 个非零值 v_ij != 0
mat.insert(i,j) = v_ij;
}
mat.makeCompressed(); // optional
稀疏矩阵支持大部分一元和二元运算:
sm1.real() sm1.imag() -sm1 0.5*sm1
sm1+sm2 sm1-sm2 sm1.cwiseProduct(sm2)
二元运算中,稀疏矩阵和普通矩阵可以混合使用//dm表示普通矩阵
dm2 = sm1 + dm1;
也支持计算转置矩阵和伴随矩阵
参考以下链接
其他相关博客:
1、单独下载与安装:https://blog.csdn.net/augusdi/article/details/12907341
2、一篇较详细的教程:https://blog.csdn.net/wzaltzap/article/details/79501856
3、计算特征值特征向量:https://blog.csdn.net/wokaowokaowokao12345/article/details/47375427
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。