赞
踩
MPNN(Message Passing Neural Networks,消息传递神经网络)是一种图神经网络(GNN)的架构,用于处理图结构数据。MPNNs 是一种通用的框架,许多其他图神经网络(如GCN, GAT)都可以看作是MPNNs的特例。它们通过消息传递机制在图中传播信息,从而对节点或整个图进行表示学习。以下是MPNN的详细介绍:
MPNN的核心思想是通过迭代过程在图的节点之间传递消息,更新节点的状态。具体来说,MPNN包括以下几个关键步骤:
对于图中的每个节点 v v v,在每一轮迭代中,消息传递和节点状态更新可以描述如下:
消息计算:
m
v
(
t
)
=
∑
u
∈
N
(
v
)
M
(
h
u
(
t
−
1
)
,
h
v
(
t
−
1
)
,
e
u
v
)
m_v^{(t)} = \sum_{u \in \mathcal{N}(v)} M(h_u^{(t-1)}, h_v^{(t-1)}, e_{uv})
mv(t)=u∈N(v)∑M(hu(t−1),hv(t−1),euv)
其中:
消息聚合:
a
v
(
t
)
=
AGG
(
{
m
u
(
t
)
:
u
∈
N
(
v
)
}
)
a_v^{(t)} = \text{AGG}( \{ m_u^{(t)} : u \in \mathcal{N}(v) \} )
av(t)=AGG({mu(t):u∈N(v)})
其中:
状态更新:
h
v
(
t
)
=
U
(
h
v
(
t
−
1
)
,
a
v
(
t
)
)
h_v^{(t)} = U(h_v^{(t-1)}, a_v^{(t)})
hv(t)=U(hv(t−1),av(t))
其中:
MPNN在许多领域有广泛的应用,包括但不限于:
Deep Graph Library (DGL) 和 PyTorch Geometric 是两种流行的图神经网络库,都提供了MPNN的实现。以下是一个简单的MPNN实现示例(基于PyTorch Geometric):
import torch import torch.nn.functional as F from torch_geometric.nn import MessagePassing from torch_geometric.utils import add_self_loops, degree class MPNNLayer(MessagePassing): def __init__(self, in_channels, out_channels): super(MPNNLayer, self).__init__(aggr='add') # "Add" aggregation. self.lin = torch.nn.Linear(in_channels, out_channels) def forward(self, x, edge_index): # Add self-loops to the adjacency matrix. edge_index, _ = add_self_loops(edge_index, num_nodes=x.size(0)) # Start propagating messages. return self.propagate(edge_index, x=x) def message(self, x_j): # x_j has shape [E, in_channels] return x_j def update(self, aggr_out): # aggr_out has shape [N, out_channels] return self.lin(aggr_out) class MPNN(torch.nn.Module): def __init__(self, in_channels, hidden_channels, out_channels): super(MPNN, self).__init__() self.mpnn1 = MPNNLayer(in_channels, hidden_channels) self.mpnn2 = MPNNLayer(hidden_channels, out_channels) def forward(self, x, edge_index): x = self.mpnn1(x, edge_index) x = F.relu(x) x = self.mpnn2(x, edge_index) return x
MPNN是一种强大的图神经网络模型,通过消息传递机制捕捉图结构数据的复杂关系。它的灵活性和通用性使其在多个领域有广泛的应用。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。