赞
踩
YOLOv5 一共有 yolov5l, yolov5m, yolov5n, yolov5s, yolov5x 五个版本, 本文主要介绍YOLOv5s模型的网络结构。
YOLOv5所用到的所有模块基本上都保存在 common.py这个文件中,在yolo.py文件中会根据yaml文件调用所需要的模块构建网络模型。
以第一个卷积模块为例[-1, 1, Conv, [64, 6, 2, 2]],-1 表示模型的输入来自上一层的输入,1代表着这里只包含一个卷积模块,Conv就是卷积层, [64,6,2,2] 就是传入模块的参数,在这里64是输出通道数,6是kernel size,2是stride,最后一个2是padding。关于参数后会在结构图中有详细展示。
anchors:中包含的是锚点的信息,yolov5在最后生成预测时用到了三个特征层的信息,每一行对应一个特征层,每行中的元素代表着三个不同尺寸锚框的信息。
需要特别注意的是 depth_multiple 和 width_multiple 这两个量,yolov5在进行模型创建的过程中并不会直接使用yaml文件中的所有参数,每个模块的depth_number乘以depth_multiple,输出通道数乘以width_multiple才是模型最终使用的参数。
- # Parameters
- nc: 80 # number of classes
- depth_multiple: 0.33 # model depth multiple
- width_multiple: 0.50 # layer channel multiple
- anchors: #锚点的信息
- - [10,13, 16,30, 33,23] # P3/8
- - [30,61, 62,45, 59,119] # P4/16
- - [116,90, 156,198, 373,326] # P5/32
-
- # YOLOv5 v6.0 backbone
- backbone:
- # [from, depth_number, module, args]
- # from:模块输入来自哪里
- # depth_number:模块包含几层(主要对应C3模块中存在几个BottleNeck)
- # module:模块对应的名称
- # args:传入模块的参数
- [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
- [-1, 3, C3, [128]],
- [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
- [-1, 6, C3, [256]],
- [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
- [-1, 9, C3, [512]],
- [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
- [-1, 3, C3, [1024]],
- [-1, 1, SPPF, [1024, 5]], # 9
- ]
-
- # YOLOv5 v6.0 head
- head:
- [[-1, 1, Conv, [512, 1, 1]],
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
- [[-1, 6], 1, Concat, [1]], # cat backbone P4
- [-1, 3, C3, [512, False]], # 13
-
- [-1, 1, Conv, [256, 1, 1]],
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
- [[-1, 4], 1, Concat, [1]], # cat backbone P3
- [-1, 3, C3, [256, False]], # 17 (P3/8-small)
-
- [-1, 1, Conv, [256, 3, 2]],
- [[-1, 14], 1, Concat, [1]], # cat head P4
- [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
-
- [-1, 1, Conv, [512, 3, 2]],
- [[-1, 10], 1, Concat, [1]], # cat head P5
- [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
-
- [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
- ]
简单的卷积模块,包含一个卷积层一个BatchNorm 一个激活函数
- def autopad(k, p=None): # kernel, padding
- # Pad to 'same'
- if p is None:
- p = k // 2 if isinstance(k, int) else (x // 2 for x in k) # auto-pad
- return p
-
-
- class Conv(nn.Module):
- # Standard convolution
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
- super().__init__()
- self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
- self.bn = nn.BatchNorm2d(c2)
- self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
-
- def forward(self, x):
- return self.act(self.bn(self.conv(x)))
-
- def forward_fuse(self, x):
- return self.act(self.conv(x))
- class Bottleneck(nn.Module):
- # Standard bottleneck
- def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
- super().__init__()
- c_ = int(c2 * e) # hidden channels
- self.cv1 = Conv(c1, c_, 1, 1)
- self.cv2 = Conv(c_, c2, 3, 1, g=g)
- self.add = shortcut and c1 == c2
-
- def forward(self, x):
- return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
之前介绍到的depth_numbers就是在这里发挥作用的,n*depth_multiple 就是BotteleNeck的层数。
- class C3(nn.Module):
- # CSP Bottleneck with 3 convolutions
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
- super().__init__()
- c_ = int(c2 * e) # hidden channels
- self.cv1 = Conv(c1, c_, 1, 1)
- self.cv2 = Conv(c1, c_, 1, 1)
- self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
- self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
- # self.m = nn.Sequential(*(CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)))
-
- def forward(self, x):
- return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
- class SPPF(nn.Module):
- # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
- def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
- super().__init__()
- c_ = c1 // 2 # hidden channels
- self.cv1 = Conv(c1, c_, 1, 1)
- self.cv2 = Conv(c_ * 4, c2, 1, 1)
- self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
-
- def forward(self, x):
- x = self.cv1(x)
- with warnings.catch_warnings():
- warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
- y1 = self.m(x)
- y2 = self.m(y1)
- y3 = self.m(y2)
- return self.cv2(torch.cat((x, y1, y2, y3, 1)))
Detect层接收来自三个层级的特征图,给出最终预测 预测结果中包含 80个类的概率值,4个检测框信息,以及一个检测框置信度信息。
- class Detect(nn.Module):
- stride = None # strides computed during build
- onnx_dynamic = False # ONNX export parameter
- export = False # export mode
-
- def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer
- super().__init__()
- self.nc = nc # number of classes
- self.no = nc + 5 # number of outputs per anchor
- self.nl = len(anchors) # number of detection layers
- self.na = len(anchors[0]) // 2 # number of anchors
- self.grid = [torch.zeros(1)] * self.nl # init grid
- self.anchor_grid = [torch.zeros(1)] * self.nl # init anchor grid
- self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2)
- self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
- self.inplace = inplace # use in-place ops (e.g. slice assignment)
-
- def forward(self, x):
- z = [] # inference output
- for i in range(self.nl):
- x[i] = self.m[i](x[i]) # conv
- bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
- x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
-
- if not self.training: # inference
- if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
- self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
-
- y = x[i].sigmoid()
- if self.inplace:
- y[..., 0:2] = (y[..., 0:2] * 2 + self.grid[i]) * self.stride[i] # xy 对于框坐标来说是添加offset来更新
- y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh 对于框大小来说是
- else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
- xy, wh, conf = y.split((2, 2, self.nc + 1), 4) # y.tensor_split((2, 4, 5), 4) # torch 1.8.0
- xy = (xy * 2 + self.grid[i]) * self.stride[i] # xy
- wh = (wh * 2) ** 2 * self.anchor_grid[i] # wh
- y = torch.cat((xy, wh, conf), 4)
- z.append(y.view(bs, -1, self.no))
-
- return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x)
YOLOv5s模型的整体架构如下图所示,字有点小可以点开查看。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。