赞
踩
pandas在处理数据上表现出了良好的易用性及优越的性能,他的api简单易用,我们经常会使用pandas框架来处理表格数据,数据处理完成后,通常用matplotlib来进行数据可视化,matplotlib和pandas作为数据科学三剑客,可以说是相辅相成。但是matplotlib给pandas数据画图的时候代码还是显得有点麻烦,而pandas.plot()函数是对matplotlib中plt.plot()函数的一个简单包装 ,可以帮助你在绘图过程中省去那些长长的matplotlib代码。pandas#plot方法绘制图像会为数据的每一列绘制一条曲线,默认按照列名展示图例。
DataFrame.plot(x=None, y=None, kind='line', ax=None, subplots=False, sharex=None, sharey=False, layout=None, figsize=None, use_index=True, title=None, grid=None, legend=True, style=None, logx=False, logy=False, loglog=False, xticks=None, yticks=None, xlim=None, ylim=None, rot=None, fontsize=None, colormap=None, position=0.5, table=False, yerr=None, xerr=None, stacked=True/False, sort_columns=False, secondary_y=False, mark_right=True, **kwds) 参数解释: x : label or position, default None #x轴,对应的列名标签或列的位置 y : label or position, default None #y轴,对应的列名标签或列的位置 kind : str #作图的类型,有以下这些类型的图 ‘line’ : line plot (default)#折线图 ‘bar’ : vertical bar plot#条形图 ‘barh’ : horizontal bar plot#横向条形图 ‘hist’ : histogram#柱状图 ‘box’ : boxplot#箱线图 ‘kde’ : Kernel Density Estimation plot#Kernel 的密度估计图,主要对柱状图添加Kernel 概率密度线 ‘density’ : same as ‘kde’ ‘area’ : area plot#不了解此图 ‘pie’ : pie plot#饼图 ‘scatter’ : scatter plot#散点图 需要传入columns方向的索引 ‘hexbin’ : hexbin plot#不了解此图 ax : matplotlib axes object, default None #坐标轴,在坐标轴上绘图。如果没有设置,则使用当前matplotlib subplot的坐标轴 subplots : boolean, default False, Make separate subplots for each column #是否用子图来画图 sharex : boolean, default True if ax is None else False, In case subplots=True, share x axis and set some x axis labels to invisible; defaults to True if ax is None otherwise False if an ax is passed in; Be aware, that passing in both an ax and sharex=True will alter all x axis labels for all axis in a figure! #如果有子图,子图是否共x轴刻度,标签 sharey : boolean, default False,In case subplots=True, share y axis and set some y axis labels to invisible #如果有子图,子图是否共y轴刻度,标签 layout : tuple (optional) (rows, columns) for the layout of subplots #子图的行列布局 figsize : a tuple (width, height) in inches #图片尺寸大小 use_index : boolean, default True,Use index as ticks for x axis #默认用索引做x轴 title : string,Title to use for the plot,#图片的标题用字符串 grid : boolean, default None (matlab style default),Axis grid lines #图片是否有网格 legend : False/True/’reverse’,Place legend on axis subplots #是否添加图例 style : list or dict,matplotlib line style per column #对每列折线图设置线的类型 logx : boolean, default False#设置x轴刻度是否取对数 Use log scaling on x axis logy : boolean, default False Use log scaling on y axis loglog : boolean, default False,Use log scaling on both x and y axes #同时设置x,y轴刻度是否取对数 xticks : sequence,Values to use for the xticks #设置x轴刻度值,序列形式(比如列表) yticks : sequence#设置y轴刻度,序列形式(比如列表) Values to use for the yticks xlim : 2-tuple/list#设置坐标轴的范围,列表或元组形式 ylim : 2-tuple/list rot : int, default None#设置轴标签(轴刻度)的显示旋转度数 Rotation for ticks (xticks for vertical, yticks for horizontal plots) fontsize : int, default None#设置轴刻度的字体大小 Font size for xticks and yticks colormap : str or matplotlib colormap object, default None#设置图的区域颜色 Colormap to select colors from. If string, load colormap with that name from matplotlib. colorbar : boolean, optional #图片柱子 If True, plot colorbar (only relevant for ‘scatter’ and ‘hexbin’ plots) position : float Specify relative alignments for bar plot layout. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center) layout : tuple (optional) #布局 (rows, columns) for the layout of the plot table : boolean, Series or DataFrame, default False #如果为正,则选择DataFrame类型的数据并且转换匹配matplotlib的布局。 If True, draw a table using the data in the DataFrame and the data will be transposed to meet matplotlib’s default layout. If a Series or DataFrame is passed, use passed data to draw a table. yerr : DataFrame, Series, array-like, dict and str See Plotting with Error Bars for detail. xerr : same types as yerr. stacked : boolean, default False in line and bar plots, and True in area plot. If True, create stacked plot. sort_columns : boolean, default False # 以字母表顺序绘制各列,默认使用前列顺序 secondary_y : boolean or sequence, default False ##设置第二个y轴(右y轴) Whether to plot on the secondary y-axis If a list/tuple, which columns to plot on secondary y-axis mark_right : boolean, default True When using a secondary_y axis, automatically mark the column labels with “(right)” in the legend kwds : keywords Options to pass to matplotlib plotting method Returns:axes : matplotlib.AxesSubplot or np.array of them
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df = pd.DataFrame(np.random.randn(30, 2).round(2),columns = ['x', 'y'])
df.plot(figsize = (8, 6)) #默认将df中所有列的数据都绘成图,X轴默认为index列,figsize指图形尺寸
plt.show()
df.x.plot() #对x列作图
df.y.plot(secondary_y=True) # 对y列作图,并将y列设置第二个y轴
plt.show()
df = pd.DataFrame(np.random.randn(6, 4).round(2),columns = ['a', 'b','c','d'])
ax = df.plot(secondary_y=['c', 'd']) # c,d列使用右Y轴。
ax.set_ylabel('ab') # 主y轴标签
ax.right_ax.set_ylabel('cd') # 第二y轴标签
ax.legend(loc='upper left') # 主轴图例的位置
ax.right_ax.legend(loc='upper right') # 设置第二图例的位置
plt.show()
df = pd.DataFrame(np.random.randn(30, 2).round(2),columns = ['x', 'y'])
df.plot(subplots=True) # x列y列分别绘制到子图中
plt.show()
柱状图和散点图用法与折线图类似
df = pd.DataFrame(np.random.rand(5, 3).round(2), columns=["a", "b", "c"])
df.plot.bar(rot=0) #rot设置轴标签旋转度数
plt.show()
用法与折线图类似,参考 [3.1.2](#3.1.2 添加第二根y轴)
用法与折线图类似,参考 [3.1.3](#3.1.3 添加子图)
df = pd.DataFrame(np.random.rand(30, 3).round(2), columns=["a", "b", "c"])
df.plot.scatter(x='a',y='b')
plt.show()
df = pd.DataFrame(np.random.rand(30, 3).round(2), columns=["a", "b", "c"])
ax = df.plot.scatter(x="a", y="b", color="red", label="b")
df.plot.scatter(x="a", y="c", color="green", label="c", ax=ax)
ax.legend(loc='upper left')
plt.show()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。