赞
踩
基本介绍
图像的全景拼接,即“缝合”两张具有重叠区域的图来创建一张全景图。其中用到了计算机视觉和图像处理技术有:关键点特征检测、局部不变特征、关键特征点匹配、RANSAC(Random Sample Consensus,随机采样一致性)和透视变形。
具体步骤
(1)检测左右两张图像的SIFT关键特征点,并提取局部不变特征 ;
(2)使用knnMatch检测来自右图(左图)的SIFT特征,与左图(右图)进行匹配 ;
(3)计算视角变换矩阵H,用变换矩阵H对右图进行扭曲变换;
(4)将左图(右图)加入到变换后的图像的左侧(右侧)获得最终图像;
import cv2 # 导入opencv包
import numpy as np # 导入numpy包,图像处理中的矩阵运算需要用到
# 检测图像的关键特征点
def sift_keypoints_detect(image):
# 处理图像一般很少用到彩色信息,通常将图像转换为灰度图
gray_image = cv2.cv2tColor(image, cv2.COLOR_BGR2GRAY)
# 获取图像特征sift-SIFT特征点,实例化对象sift
sift = cv2.SIFT_create()
# keypoints:特征点向量,向量内的每一个元素是一个KeyPoint对象,包含了特征点的各种属性信息(角度、关键特征点坐标等)
# features:表示输出的sift特征向量,通常是128维的
keypoints, features = sift.detectAndCompute(image, None)
"""
cv2.drawKeyPoints():在图像的关键特征点部位绘制一个小圆圈。
如果传递标志flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS,
它将绘制一个大小为keypoint的圆圈并显示它的方向。
这种方法同时显示图像的坐标,大小和方向,是最能显示特征的一种绘制方式。
"""
keypoints_image = cv2.drawKeypoints(
gray_image, keypoints, None, flags=cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS)
# 返回带关键特征点的图像、关键特征点和sift的特征向量
return keypoints_image, keypoints, features
# 使用KNN检测来自左右图像的SIFT特征进行匹配
def get_feature_point_ensemble(features_right, features_left):
# 创建BFMatcher对象解决匹配
bf = cv2.BFMatcher()
# knnMatch()函数:返回每个特征点的最佳匹配k个匹配点
# features_right为模板图,features_left为匹配图
matches = bf.knnMatch(features_right, features_left, k=2)
"""
利用sorted()函数对matches对象进行升序(默认)操作,x:x[]字母可以随意修改,
排序方式按照中括号[]里面的维度进行排序,[0]按照第一维排序,[2]按照第三维排序
"""
matches = sorted(matches, key=lambda x: x[0].distance / x[1].distance)
# 建立列表good用于存储匹配的点集
good = []
for m, n in matches:
# ratio的值越大,匹配的线条越密集,但错误匹配点也会增多
ratio = 0.6
if m.distance < ratio * n.distance:
good.append(m)
# 返回匹配的关键特征点集
return good
# 计算视角变换矩阵H,用H对右图进行变换并返回全景拼接图像
def Panorama_stitching(image_right, image_left):
_, keypoints_right, features_right = sift_keypoints_detect(image_right)
_, keypoints_left, features_left = sift_keypoints_detect(image_left)
goodMatch = get_feature_point_ensemble(features_right, features_left)
# 当筛选项的匹配对大于4对(因为homography单应性矩阵的计算需要至少四个点)时,计算视角变换矩阵
if len(goodMatch) > 4:
# 获取匹配对的点坐标
Point_coordinates_right = np.float32(
[keypoints_right[m.queryIdx].pt for m in goodMatch]).reshape(-1, 1, 2)
Point_coordinates_left = np.float32(
[keypoints_left[m.trainIdx].pt for m in goodMatch]).reshape(-1, 1, 2)
# ransacReprojThreshold:将点对视为内点的最大允许重投影错误阈值(仅用于RANSAC和RHO方法时)
# 若srcPoints和dstPoints是以像素为单位的,该参数通常设置在1到10的范围内
ransacReprojThreshold = 4
# cv2.findHomography():计算多个二维点对之间的最优单映射变换矩阵 H(3行x3列),使用最小均方误差或者RANSAC方法
# 作用:利用基于RANSAC的鲁棒算法选择最优的四组配对点,再计算转换矩阵H(3*3)并返回,以便于反向投影错误率达到最小
Homography, status = cv2.findHomography(
Point_coordinates_right, Point_coordinates_left, cv2.RANSAC, ransacReprojThreshold)
# cv2.warpPerspective():透视变换函数,用于解决cv22.warpAffine()不能处理视场和图像不平行的问题
# 作用:就是对图像进行透视变换,可保持直线不变形,但是平行线可能不再平行
Panorama = cv2.warpPerspective(
image_right, Homography, (image_right.shape[1] + image_left.shape[1], image_right.shape[0]))
cv2.imshow("扭曲变换后的右图", Panorama)
cv2.waitKey(0)
cv2.destroyAllWindows()
# 将左图加入到变换后的右图像的左端即获得最终图像
Panorama[0:image_left.shape[0], 0:image_left.shape[1]] = image_left
# 返回全景拼接的图像
return Panorama
if __name__ == '__main__':
# 读取需要拼接的图像,注意图像左右的顺序
image_left = cv2.imread("./Left.jpg")
image_right = cv2.imread("./Right.jpg")
"""
通过调用cv2.resize()使用插值的方式来改变图像的尺寸,保证左右两张图像大小一致。cv2.resize()函数中的
第二个形参dsize表示输出图像大小尺寸,当设置为0(None)时表示按fx与fy与原始图像大小相乘得到输出图像尺寸大小
"""
image_right = cv2.resize(image_right, None, fx=0.4, fy=0.24)
image_left = cv2.resize(
image_left, (image_right.shape[1], image_right.shape[0]))
# 获取检测到关键特征点后的图像的相关参数
keypoints_image_right, keypoints_right, features_right = sift_keypoints_detect(
image_right)
keypoints_image_left, keypoints_left, features_left = sift_keypoints_detect(
image_left)
# 利用np.hstack()函数同时将原图和绘有关键特征点的图像沿着竖直方向(水平顺序)堆叠起来
cv2.imshow("左图关键特征点检测", np.hstack((image_left, keypoints_image_left)))
# 一般在imshow后设置 waitKey(0) , 代表按任意键继续
cv2.waitKey(0)
# 删除先前建立的窗口
cv2.destroyAllWindows()
cv2.imshow("右图关键特征点检测", np.hstack((image_right, keypoints_image_right)))
cv2.waitKey(0)
cv2.destroyAllWindows()
goodMatch = get_feature_point_ensemble(features_right, features_left)
# cv2.drawMatches():在提取两幅图像特征之后,画出匹配点对连线
# matchColor – 匹配的颜色(特征点和连线),若matchColor==Scalar::all(-1),颜色随机
all_goodmatch_image = cv2.drawMatches(
image_right, keypoints_right, image_left, keypoints_left, goodMatch, None, None, None, None, flags=2)
cv2.imshow("所有匹配的SIFT关键特征点连线", all_goodmatch_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
# 把图片拼接成全景图并保存
Panorama = Panorama_stitching(image_right, image_left)
cv2.namedWindow("全景图", cv2.WINDOW_AUTOSIZE)
cv2.imshow("全景图", Panorama)
cv2.imwrite("./全景图.jpg", Panorama)
cv2.waitKey(0)
cv2.destroyAllWindows()
左图关键特征点检测
右图关键特征点检测
所有匹配的SIFT关键特征点连线
扭曲变换后的右图
全景图
由于输入的左右图像之间有大量重叠,导致合成的全景图的主要添加部分是在拼接图像的右侧,因此会造成拼接后全景图右侧有大量的黑色空白区域。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。