赞
踩
AM
, DSB-SC
与 SSC
三种系统的抗噪声性能
(AM)
时域表示:
{ s A M ( t ) = A c [ 1 + m ( t ) ] cos ( 2 π f c t ) β A M = m a x { ∣ m ( t ) ∣ } (2.1.1) {sAM(t)=Ac[1+m(t)]cos(2πfct)βAM=max{|m(t)|} \tag{2.1.1} { sAM(t)βAM=Ac[1+m(t)]cos(2πfct)=max{ ∣m(t)∣}(2.1.1)
频域表示:
S A M ( f ) = A c 2 [ δ ( f − f c ) + δ ( f + f c ) ] + A c 2 [ M ( f − f c ) + M ( f + f c ) ] (2.1.2) S_{AM}(f) = \cfrac{A_c}{2}\bigg[\delta(f - f_c) + \delta(f + f_c)\bigg] + \cfrac{A_c}{2}\bigg[M(f - f_c) + M(f + f_c)\bigg] \tag{2.1.2} SAM(f)=2Ac[δ(f−fc)+δ(f+fc)]+2Ac[M(f−fc)+M(f+fc)](2.1.2)
解调器输入的已调AM信号 s ( t ) s(t) s(t):
时域表示:
s ( t ) = A c [ 1 + m ( t ) ] cos ( 2 π f c t ) (2.1.3) s(t) = A_c[1 + m(t)]\cos(2\pi f_c t) \tag{2.1.3} s(t)=Ac[1+m(t)]cos(2πfct)(2.1.3)
频域表示:
S ( f ) = A c 2 [ δ ( f − f c ) + δ ( f + f c ) ] + A c 2 [ M ( f − f c ) + M ( f + f c ) ] (2.1.4) S(f) = \cfrac{A_c}{2}\bigg[\delta(f - f_c) + \delta(f + f_c)\bigg] + \cfrac{A_c}{2}\bigg[M(f - f_c) + M(f + f_c)\bigg] \tag{2.1.4} S(f)=2Ac[δ(f−fc)+δ(f+fc)]+2Ac[M(f−fc)+M(f+fc)](2.1.4)
通过带通滤波器(BPF)
并移频的AM信号 s d ( t ) s_d(t) sd(t):
时域表示:
s d ( t ) = A c 2 [ 1 + m ( t ) ] ⋅ [ 1 + cos ( 2 ⋅ 2 π f c t ) ] (2.1.5) s_d(t) = \cfrac{A_c}{2}\bigg[1 + m(t)\bigg]\cdot\bigg[1 + \cos(2 \cdot 2\pi f_c t)\bigg] \tag{2.1.5} sd(t)=2Ac[1+m(t)]⋅[1+cos(2⋅2πfct)](2.1.5)
频域表示:
S d ( f ) = A c 2 [ M ( f ) + δ ( f ) ] + A c 4 [ M ( f − 2 f c ) + M ( f + 2 f c ) + δ ( f − 2 f c ) + δ ( f + 2 f c ) ] (2.1.6) S_d(f) = \cfrac{A_c}{2}\bigg[M(f) + \delta(f)\bigg] + \cfrac{A_c}{4}\bigg[M(f - 2f_c) + M(f + 2f_c) + \delta(f - 2f_c) + \delta(f + 2f_c)\bigg] \tag{2.1.6} Sd(f)=2Ac[M(f)+δ(f)]+4Ac[M(f−2fc)+M(f+2fc)+δ(f−2fc)+δ(f+2fc)](2.1.6)
通过低通滤波器(LPF)
滤除高频成分的解调信号 s o ( t ) s_o(t) so(t):
时域表示:
s o ( t ) = A c 2 + A c 2 m ( t ) (2.1.7) s_o(t) = \cfrac{A_c}{2} + \cfrac{A_c}{2}m(t) \tag{2.1.7} so(t)=2Ac+2Acm(t)(2.1.7)
频域表示:
S o ( f ) = A c 2 δ ( f ) + A c 2 M ( f ) (2.1.8) S_o(f) = \cfrac{A_c}{2}\delta(f) + \cfrac{A_c}{2}M(f) \tag{2.1.8} So(f)=2Acδ(f)+2AcM(f)(2.1.8)
所滤除的高频成分 s h ( t ) s_h(t) sh(t):
时域表示:
s h ( t ) = A c 2 [ 1 + m ( t ) ] ⋅ cos ( 2 ⋅ 2 π f c t ) (2.1.9) s_h(t) = \cfrac{A_c}{2}\bigg[1 + m(t)\bigg] \cdot \cos(2 \cdot 2\pi f_c t) \tag{2.1.9} sh(t)=2Ac[1+m(t)]⋅cos(2⋅2πfct)(2.1.9)
频域表示:
S h ( f ) = A c 4 [ M ( f − 2 f c ) + M ( f + 2 f c ) + δ ( f − 2 f c ) + δ ( f + 2 f c ) ] (2.1.10) S_h(f) = \cfrac{A_c}{4}\bigg[M(f - 2f_c) + M(f + 2f_c) + \delta(f - 2f_c) + \delta(f + 2f_c)\bigg] \tag{2.1.10} Sh(f)=4Ac[M(f−2fc)+M(f+2fc)+δ(f−2fc)+δ(f+2fc)](2.1.10)
(DSB-SC)
时域表示:
s D S B ( t ) = A c m ( t ) cos ( 2 π f c t ) (2.2.1) s_{DSB}(t) = A_cm(t)\cos(2\pi f_c t) \tag{2.2.1} sDSB(t)=Acm(t)cos(2πfct)(2.2.1)
频域表示:
S D S B ( f ) = A c 2 [ M ( f − f c ) + M ( f + f c ) ] (2.2.2) S_{DSB}(f) = \cfrac{A_c}{2}\bigg[M(f - f_c) + M(f + f_c)\bigg] \tag{2.2.2} SDSB(f)=2Ac[M(f−fc)+M(f+fc)](2.2.2)
解调器输入的DSB信号 s ( t ) s(t) s(t):
时域表示:
s ( t ) = A c m ( t ) cos ( 2 π f c t ) (2.2.3) s(t) = A_cm(t)\cos(2\pi f_c t) \tag{2.2.3} s(t)=Acm(t)cos(2πfct)(2.2.3)
频域表示:
S ( f ) = A c 2 [ M ( f − f c ) + M ( f + f c ) ] (2.2.4) S(f) = \cfrac{A_c}{2}\bigg[M(f - f_c) + M(f + f_c)\bigg] \tag{2.2.4} S(f)=2Ac[M(f−fc)+M(f+fc)](2.2.4)
通过带通滤波器(BPF)
的并移频的DSB信号 s d ( t ) s_d(t) sd(t):
时域表示:
s d ( t ) = A c 2 m ( t ) ⋅ [ 1 + cos ( 2 ⋅ 2 π f c t ) ] (2.2.5) s_d(t) = \cfrac{A_c}{2}m(t) \cdot \bigg[1 + \cos(2 \cdot 2\pi f_c t)\bigg] \tag{2.2.5} sd(t)=2Acm(t)⋅[1+cos(2⋅2πfct)](2.2.5)
频域表示:
S d ( f ) = A c 2 M ( f ) + A c 4 [ M ( f − 2 f c ) + M ( f + 2 f c ) ] (2.2.6) S_d(f) = \cfrac{A_c}{2}M(f) + \cfrac{A_c}{4}\bigg[M(f - 2f_c) + M(f + 2f_c)\bigg] \tag{2.2.6} Sd(f)=2AcM(f)+4Ac[M(f−2fc)+M(f+2fc)](2.2.6)
通过低通滤波器(LPF)
滤除高频成分的解调信号 s o ( t ) s_o(t) so(t):
时域表示:
s o ( t ) = A c 2 m ( t ) (2.2.7) s_o(t) = \cfrac{A_c}{2} m(t) \tag{2.2.7} so(t)=2Acm(t)(2.2.7)
频域表示:
S o ( f ) = A c 2 M ( f ) (2.2.8) S_o(f) = \cfrac{A_c}{2}M(f) \tag{2.2.8} So(f)=2AcM(f)(2.2.8)
所滤除的高频成分 s h ( t ) s_h(t) sh(t):
时域表示:
s h ( t ) = A c 2 m ( t ) ⋅ cos ( 2 ⋅ 2 π f c t ) (2.2.9) s_h(t) = \cfrac{A_c}{2}m(t) \cdot \cos(2 \cdot 2\pi f_c t) \tag{2.2.9} sh(t)=2Acm(t)⋅cos(2⋅2πfct)(2.2.9)
频域表示:
S h ( f ) = A c 4 [ M ( f − 2 f c ) + M ( f + 2 f c ) ] (2.2.10) S_h(f) = \cfrac{A_c}{4}\bigg[M(f - 2f_c) + M(f + 2f_c)\bigg] \tag{2.2.10} Sh(f)=4Ac[M(f−2fc)+M(f+2fc)](2.2.10)
(SSB)
时域表示:
s S S B ( t ) = A c m ( t ) cos ( 2 π f c t ) ∗ h S S B ( t ) (2.3.1) s_{SSB}(t) = A_cm(t)\cos(2\pi f_c t) * h_{SSB}(t) \tag{2.3.1} sSSB(t)=Acm(t)cos(2πfct)∗hSSB(t)(2.3.1)
m ( t ) m(t) m(t) 为基带信号
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。