当前位置:   article > 正文

ICCV2017论文摘要汇总_high-resolution shape completion using deep neural

high-resolution shape completion using deep neural networks for global struc

1. Globally-Optimal Inlier Set Maximisation for Simultaneous Camera Pose and Feature Correspondence

Abstract: Estimating the 6-DoF pose of a camera from a single image relative to a pre-computed 3D point-set is an important task for many computer vision applications. Perspective-n-Point (PnP) solvers are routinely used for camera pose estimation, provided that a good quality set of 2D-3D feature correspondences are known beforehand. However, finding optimal correspondences between 2D key-points and a 3D point-set is non-trivial, especially when only geometric (position) information is known. Existing approaches to the simultaneous pose and correspondence problem use local optimisation, and are therefore unlikely to find the optimal solution without a good pose initialisation, or introduce restrictive assumptions. Since a large proportion of outliers are common for this problem, we instead propose a globally-optimal inlier set cardinality maximisation approach which jointly estimates optimal camera pose and optimal correspondences. Our approach employs branch-and-bound to search the 6D space of camera poses, guaranteeing global optimality without requiring a pose prior. The geometry of SE(3) is used to find novel upper and lower bounds for the number of inliers and local optimisation is integrated to accelerate convergence. The evaluation empirically supports the optimality proof and shows that the method performs much more robustly than existing approaches, including on a large-scale outdoor data-set.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237272&isnumber=8237262

2. Robust Pseudo Random Fields for Light-Field Stereo Matching

Abstract: Markov Random Fields are widely used to model lightfield stereo matching problems. However, most previous approaches used fixed parameters and did not adapt to lightfield statistics. Instead, they explored explicit vision cues to provide local adaptability and thus enhanced depth quality. But such additional assumptions could end up confining their applicability, e.g. algorithms designed for dense light fields are not suitable for sparse ones.,,In this paper, we develop an empirical Bayesian framework-Robust Pseudo Random Field-to explore intrinsic statistical cues for broad applicability. Based on pseudo-likelihood, it applies soft expectation-maximization (EM) for good model fitting and hard EM for robust depth estimation. We introduce novel pixel difference models to enable such adaptability and robustness simultaneously. We also devise an algorithm to employ this framework on dense, sparse, and even denoised light fields. Experimental results show that it estimates scene-dependent parameters robustly and converges quickly. In terms of depth accuracy and computation speed, it also outperforms state-of-the-art algorithms constantly.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237273&isnumber=8237262

3. A Lightweight Approach for On-the-Fly Reflectance Estimation

Abstract: Estimating surface reflectance (BRDF) is one key component for complete 3D scene capture, with wide applications in virtual reality, augmented reality, and human computer interaction. Prior work is either limited to controlled environments (e.g., gonioreflectometers, light stages, or multi-camera domes), or requires the joint optimization of shape, illumination, and reflectance, which is often computationally too expensive (e.g., hours of running time) for real-time applications. Moreover, most prior work requires HDR images as input which further complicates the capture process. In this paper, we propose a lightweight approach for surface reflectance estimation directly from 8-bit RGB images in real-time, which can be easily plugged into any 3D scanning-and-fusion system with a commodity RGBD sensor. Our method is learning-based, with an inference time of less than 90ms per scene and a model size of less than 340K bytes. We propose two novel network architectures, HemiCNN and Grouplet, to deal with the unstructured input data from multiple viewpoints under unknown illumination. We further design a loss function to resolve the color-constancy and scale ambiguity. In addition, we have created a large synthetic dataset, SynBRDF, which comprises a total of 500K RGBD images rendered with a physically-based ray tracer under a variety of natural illumination, covering 5000 materials and 5000 shapes. SynBRDF is the first large-scale benchmark dataset for reflectance estimation. Experiments on both synthetic data and real data show that the proposed method effectively recovers surface reflectance, and outperforms prior work for reflectance estimation in uncontrolled environments.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237274&isnumber=8237262

4. Distributed Very Large Scale Bundle Adjustment by Global Camera Consensus

Abstract: The increasing scale of Structure-from-Motion is fundamentally limited by the conventional optimization framework for the all-in-one global bundle adjustment. In this paper, we propose a distributed approach to coping with this global bundle adjustment for very large scale Structure-from-Motion computation. First, we derive the distributed formulation from the classical optimization algorithm ADMM, Alternating Direction Method of Multipliers, based on the global camera consensus. Then, we analyze the conditions under which the convergence of this distributed optimization would be guaranteed. In particular, we adopt over-relaxation and self-adaption schemes to improve the convergence rate. After that, we propose to split the large scale camera-point visibility graph in order to reduce the communication overheads of the distributed computing. The experiments on both public large scale SfM data-sets and our very large scale aerial photo sets demonstrate that the proposed distributed method clearly outperforms the state-of-the-art method in efficiency and accuracy.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237275&isnumber=8237262

5. Practical Projective Structure from Motion (P2SfM)

Abstract: This paper presents a solution to the Projective Structure from Motion (PSfM) problem able to deal efficiently with missing data, outliers and, for the first time, large scale 3D reconstruction scenarios. By embedding the projective depths into the projective parameters of the points and views, we decrease the number of unknowns to estimate and improve computational speed by optimizing standard linear Least Squares systems instead of homogeneous ones. In order to do so, we show that an extension of the linear constraints from the Generalized Projective Reconstruction Theorem can be transferred to the projective parameters, ensuring also a valid projective reconstruction in the process. We use an incremental approach that, starting from a solvable sub-problem, incrementally adds views and points until completion with a robust, outliers free, procedure. Experiments with simulated data shows that our approach is performing well, both in term of the quality of the reconstruction and the capacity to handle missing data and outliers with a reduced computational time. Finally, results on real datasets shows the ability of the method to be used in medium and large scale 3D reconstruction scenarios with high ratios of missing data (up to 98%).

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237276&isnumber=8237262

6. Anticipating Daily Intention Using On-wrist Motion Triggered Sensing

Abstract: Anticipating human intention by observing one’s actions has many applications. For instance, picking up a cellphone, then a charger (actions) implies that one wants to charge the cellphone (intention) (Fig. 1). By anticipating the intention, an intelligent system can guide the user to the closest power outlet. We propose an on-wrist motion triggered sensing system for anticipating daily intentions, where the on-wrist sensors help us to persistently observe one’s actions. The core of the system is a novel Recurrent Neural Network (RNN) and Policy Network (PN), where the RNN encodes visual and motion observation to anticipate intention, and the PN parsimoniously triggers the process of visual observation to reduce computation requirement. We jointly trained the whole network using policy gradient and cross-entropy loss. To evaluate, we collect the first daily “intention” dataset consisting of 2379 videos with 34 intentions and 164 unique action sequences (paths in Fig. 1). Our method achieves 92:68%; 90:85%; 97:56% accuracy on three users while processing only 29% of the visual observation on average.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237277&isnumber=8237262

7. Rethinking Reprojection: Closing the Loop for Pose-Aware Shape Reconstruction from a Single Image

Abstract: An emerging problem in computer vision is the reconstruction of 3D shape and pose of an object from a single image. Hitherto, the problem has been addressed through the application of canonical deep learning methods to regress from the image directly to the 3D shape and pose labels. These approaches, however, are problematic from two perspectives. First, they are minimizing the error between 3D shapes and pose labels - with little thought about the nature of this “label error” when reprojecting the shape back onto the image. Second, they rely on the onerous and ill-posed task of hand labeling natural images with respect to 3D shape and pose. In this paper we define the new task of pose-aware shape reconstruction from a single image, and we advocate that cheaper 2D annotations of objects silhouettes in natural images can be utilized. We design architectures of pose-aware shape reconstruction which reproject the predicted shape back on to the image using the predicted pose. Our evaluation on several object categories demonstrates the superiority of our method for predicting pose-aware 3D shapes from natural images.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237278&isnumber=8237262

8. End-to-End Learning of Geometry and Context for Deep Stereo Regression

Abstract: We propose a novel deep learning architecture for regressing disparity from a rectified pair of stereo images. We leverage knowledge of the problem’s geometry to form a cost volume using deep feature representations. We learn to incorporate contextual information using 3-D convolutions over this volume. Disparity values are regressed from the cost volume using a proposed differentiable soft argmin operation, which allows us to train our method end-to-end to sub-pixel accuracy without any additional post-processing or regularization. We evaluate our method on the Scene Flow and KITTI datasets and on KITTI we set a new stateof-the-art benchmark, while being significantly faster than competing approaches.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237279&isnumber=8237262

9. Using Sparse Elimination for Solving Minimal Problems in Computer Vision

Abstract: Finding a closed form solution to a system of polynomial equations is a common problem in computer vision as well as in many other areas of engineering and science. Gröbner basis techniques are often employed to provide the solution, but implementing an efficient Gröbner basis solver to a given problem requires strong expertise in algebraic geometry. One can also convert the equations to a polynomial eigenvalue problem (PEP) and solve it using linear algebra, which is a more accessible approach for those who are not so familiar with algebraic geometry. In previous works PEP has been successfully applied for solving some relative pose problems in computer vision, but its wider exploitation is limited by the problem of finding a compact monomial basis. In this paper, we propose a new algorithm for selecting the basis that is in general more compact than the basis obtained with a state-of-the-art algorithm making PEP a more viable option for solving polynomial equations. Another contribution is that we present two minimal problems for camera self-calibration based on homography, and demonstrate experimentally using synthetic and real data that our algorithm can provide a numerically stable solution to the camera focal length from two homographies of unknown planar scene.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237280&isnumber=8237262

10. High-Resolution Shape Completion Using Deep Neural Networks for Global Structure and Local Geometry Inference

Abstract: We propose a data-driven method for recovering missing parts of 3D shapes. Our method is based on a new deep learning architecture consisting of two sub-networks: a global structure inference network and a local geometry refinement network. The global structure inference network incorporates a long short-term memorized context fusion module (LSTM-CF) that infers the global structure of the shape based on multi-view depth information provided as part of the input. It also includes a 3D fully convolutional (3DFCN) module that further enriches the global structure representation according to volumetric information in the input. Under the guidance of the global structure network, the local geometry refinement network takes as input local 3D patches around missing regions, and progressively produces a high-resolution, complete surface through a volumetric encoder-decoder architecture. Our method jointly trains the global structure inference and local geometry refinement networks in an end-to-end manner. We perform qualitative and quantitative evaluations on six object categories, demonstrating that our method outperforms existing state-of-the-art work on shape completion.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237281&isnumber=8237262

11. Temporal Tessellation: A Unified Approach for Video Analysis

Abstract: We present a general approach to video understanding, inspired by semantic transfer techniques that have been successfully used for 2D image analysis. Our method considers a video to be a 1D sequence of clips, each one associated with its own semantics. The nature of these semantics - natural language captions or other labels - depends on the task at hand. A test video is processed by forming correspondences between its clips and the clips of reference videos with known semantics, following which, reference semantics can be transferred to the test video. We describe two matching methods, both designed to ensure that (a) reference clips appear similar to test clips and (b), taken together, the semantics of the selected reference clips is consistent and maintains temporal coherence. We use our method for video captioning on the LSMDC’16 benchmark, video summarization on the SumMe and TV-Sum benchmarks, Temporal Action Detection on the Thumos2014 benchmark, and sound prediction on the Greatest Hits benchmark. Our method not only surpasses the state of the art, in four out of five benchmarks, but importantly, it is the only single method we know of that was successfully applied to such a diverse range of tasks.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237282&isnumber=8237262

12. Learning Policies for Adaptive Tracking with Deep Feature Cascades

Abstract: Visual object tracking is a fundamental and time-critical vision task. Recent years have seen many shallow tracking methods based on real-time pixel-based correlation filters, as well as deep methods that have top performance but need a high-end GPU. In this paper, we learn to improve the speed of deep trackers without losing accuracy. Our fundamental insight is to take an adaptive approach, where easy frames are processed with cheap features (such as pixel values), while challenging frames are processed with invariant but expensive deep features. We formulate the adaptive tracking problem as a decision-making process, and learn an agent to decide whether to locate objects with high confidence on an early layer, or continue processing subsequent layers of a network. This significantly reduces the feedforward cost for easy frames with distinct or slow-moving objects. We train the agent offline in a reinforcement learning fashion, and further demonstrate that learning all deep layers (so as to provide good features for adaptive tracking) can lead to near real-time average tracking speed of 23 fps on a single CPU while achieving state-of-the-art performance. Perhaps most tellingly, our approach provides a 100X speedup for almost 50% of the time, indicating the power of an adaptive approach.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237283&isnumber=8237262

13. Temporal Shape Super-Resolution by Intra-frame Motion Encoding Using High-fps Structured Light

Abstract: One of the solutions of depth imaging of moving scene is to project a static pattern on the object and use just a single image for reconstruction. However, if the motion of the object is too fast with respect to the exposure time of the image sensor, patterns on the captured image are blurred and reconstruction fails. In this paper, we impose multiple projection patterns into each single captured image to realize temporal super resolution of the depth image sequences. With our method, multiple patterns are projected onto the object with higher fps than possible with a camera. In this case, the observed pattern varies depending on the depth and motion of the object, so we can extract temporal information of the scene from each single image. The decoding process is realized using a learning-based approach where no geometric calibration is needed. Experiments confirm the effectiveness of our method where sequential shapes are reconstructed from a single image. Both quantitative evaluations and comparisons with recent techniques were also conducted.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237284&isnumber=8237262

14. Real-Time Monocular Pose Estimation of 3D Objects Using Temporally Consistent Local Color Histograms

Abstract: We present a novel approach to 6DOF pose estimation and segmentation of rigid 3D objects using a single monocular RGB camera based on temporally consistent, local color histograms. We show that this approach outperforms previous methods in cases of cluttered backgrounds, heterogenous objects, and occlusions. The proposed histograms can be used as statistical object descriptors within a template matching strategy for pose recovery after temporary tracking loss e.g. caused by massive occlusion or if the object leaves the camera’s field of view. The descriptors can be trained online within a couple of seconds moving a handheld object in front of a camera. During the training stage, our approach is already capable to recover from accidental tracking loss. We demonstrate the performance of our method in comparison to the state of the art in different challenging experiments including a popular public data set.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237285&isnumber=8237262

15. CAD Priors for Accurate and Flexible Instance Reconstruction

Abstract: We present an efficient and automatic approach for accurate instance reconstruction of big 3D objects from multiple, unorganized and unstructured point clouds, in presence of dynamic clutter and occlusions. In contrast to conventional scanning, where the background is assumed to be rather static, we aim at handling dynamic clutter where the background drastically changes during object scanning. Currently, it is tedious to solve this problem with available methods unless the object of interest is first segmented out from the rest of the scene. We address the problem by assuming the availability of a prior CAD model, roughly resembling the object to be reconstructed. This assumption almost always holds in applications such as industrial inspection or reverse engineering. With aid of this prior acting as a proxy, we propose a fully enhanced pipeline, capable of automatically detecting and segmenting the object of interest from scenes and creating a pose graph, online, with linear complexity. This allows initial scan alignment to the CAD model space, which is then refined without the CAD constraint to fully recover a high fidelity 3D reconstruction, accurate up to the sensor noise level. We also contribute a novel object detection method, local implicit shape models (LISM) and give a fast verification scheme. We evaluate our method on multiple datasets, demonstrating the ability to accurately reconstruct objects from small sizes up to 125m3.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237286&isnumber=8237262

16. Colored Point Cloud Registration Revisited

Abstract: We present an algorithm for aligning two colored point clouds. The key idea is to optimize a joint photometric and geometric objective that locks the alignment along both the normal direction and the tangent plane. We extend a photometric objective for aligning RGB-D images to point clouds, by locally parameterizing the point cloud with a virtual camera. Experiments demonstrate that our algorithm is more accurate and more robust than prior point cloud registration algorithms, including those that utilize color information. We use the presented algorithms to enhance a state-of-the-art scene reconstruction system. The precision of the resulting system is demonstrated on real-world scenes with accurate ground-truth models.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237287&isnumber=8237262

17. Learning Compact Geometric Features

Abstract: We present an approach to learning features that represent the local geometry around a point in an unstructured point cloud. Such features play a central role in geometric registration, which supports diverse applications in robotics and 3D vision. Current state-of-the-art local features for unstructured point clouds have been manually crafted and none combines the desirable properties of precision, compactness, and robustness. We show that features with these properties can be learned from data, by optimizing deep networks that map high-dimensional histograms into low-dimensional Euclidean spaces. The presented approach yields a family of features, parameterized by dimension, that are both more compact and more accurate than existing descriptors.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237288&isnumber=8237262

18. Joint Layout Estimation and Global Multi-view Registration for Indoor Reconstruction

Abstract: In this paper, we propose a novel method to jointly solve scene layout estimation and global registration problems for accurate indoor 3D reconstruction. Given a sequence of range data, we first build a set of scene fragments using KinectFusion and register them through pose graph optimization. Afterwards, we alternate between layout estimation and layout-based global registration processes in iterative fashion to complement each other. We extract the scene layout through hierarchical agglomerative clustering and energy-based multi-model fitting in consideration of noisy measurements. Having the estimated scene layout in one hand, we register all the range data through the global iterative closest point algorithm where the positions of 3D points that belong to the layout such as walls and a ceiling are constrained to be close to the layout. We experimentally verify the proposed method with the publicly available synthetic and real-world datasets in both quantitative and qualitative ways.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237289&isnumber=8237262

19. A Geometric Framework for Statistical Analysis of Trajectories with Distinct Temporal Spans

Abstract: Analyzing data representing multifarious trajectories is central to the many fields in Science and Engineering; for example, trajectories representing a tennis serve, a gymnast’s parallel bar routine, progression/remission of disease and so on. We present a novel geometric algorithm for performing statistical analysis of trajectories with distinct number of samples representing longitudinal (or temporal) data. A key feature of our proposal is that unlike existing schemes, our model is deployable in regimes where each participant provides a different number of acquisitions (trajectories have different number of sample points or temporal span). To achieve this, we develop a novel method involving the parallel transport of the tangent vectors along each given trajectory to the starting point of the respective trajectories and then use the span of the matrix whose columns consist of these vectors, to construct a linear subspace in Rm. We then map these linear subspaces (possibly of distinct dimensions) of Rm on to a single high dimensional hypersphere. This enables computing group statistics over trajectories by instead performing statistics on the hypersphere (equipped with a simpler geometry). Given a point on the hypersphere representing a trajectory, we also provide a “reverse mapping” algorithm to uniquely (under certain assumptions) reconstruct the subspace that corresponds to this point. Finally, by using existing algorithms for recursive Fŕechet mean and exact principal geodesic analysis on the hypersphere, we present several experiments on synthetic and real (vision and medical) data sets showing how group testing on such diversely sampled longitudinal data is possible by analyzing the reconstructed data in the subspace spanned by the first few principal components.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237290&isnumber=8237262

20. An Optimal Transportation Based Univariate Neuroimaging Index

Abstract: The alterations of brain structures and functions have been considered closely correlated to the change of cognitive performance due to neurodegenerative diseases such as Alzheimer’s disease. In this paper, we introduce a variational framework to compute the optimal transformation (OT) in 3D space and propose a univariate neuroimaging index based on OT to measure such alterations. We compute the OT from each image to a template and measure the Wasserstein distance between them. By comparing the distances from all the images to the common template, we obtain a concise and informative index for each image. Our framework makes use of the Newton’s method, which reduces the computational cost and enables itself to be applicable to large-scale datasets. The proposed work is a generic approach and thus may be applicable to various volumetric brain images, including structural magnetic resonance (sMR) and fluorodeoxyglucose positron emission tomography (FDG-PET) images. In the classification between Alzheimer’s disease patients and healthy controls, our method achieves an accuracy of 82:30% on the Alzheimers Disease Neuroimaging Initiative (ADNI) baseline sMRI dataset and outperforms several other indices. On FDG-PET dataset, we boost the accuracy to 88:37% by leveraging pairwise Wasserstein distances. In a longitudinal study, we obtain a 5% significance with p-value = 1:13 ×105 in a t-test on FDG-PET. The results demonstrate a great potential of the proposed index for neuroimage analysis and the precision medicine research.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237291&isnumber=8237262

21. S^3FD: Single Shot Scale-Invariant Face Detector

Abstract: This paper presents a real-time face detector, named Single Shot Scale-invariant Face Detector (S3FD), which performs superiorly on various scales of faces with a single deep neural network, especially for small faces. Specifically, we try to solve the common problem that anchor-based detectors deteriorate dramatically as the objects become smaller. We make contributions in the following three aspects: 1) proposing a scale-equitable face detection framework to handle different scales of faces well. We tile anchors on a wide range of layers to ensure that all scales of faces have enough features for detection. Besides, we design anchor scales based on the effective receptive field and a proposed equal proportion interval principle; 2) improving the recall rate of small faces by a scale compensation anchor matching strategy; 3) reducing the false positive rate of small faces via a max-out background label. As a consequence, our method achieves state-of-the-art detection performance on all the common face detection benchmarks, including the AFW, PASCAL face, FDDB and WIDER FACE datasets, and can run at 36 FPS on a Nvidia Titan X (Pascal) for VGA-resolution images.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237292&isnumber=8237262

22. Amulet: Aggregating Multi-level Convolutional Features for Salient Object Detection

Abstract: Fully convolutional neural networks (FCNs) have shown outstanding performance in many dense labeling problems. One key pillar of these successes is mining relevant information from features in convolutional layers. However, how to better aggregate multi-level convolutional feature maps for salient object detection is underexplored. In this work, we present Amulet, a generic aggregating multi-level convolutional feature framework for salient object detection. Our framework first integrates multi-level feature maps into multiple resolutions, which simultaneously incorporate coarse semantics and fine details. Then it adaptively learns to combine these feature maps at each resolution and predict saliency maps with the combined features. Finally, the predicted results are efficiently fused to generate the final saliency map. In addition, to achieve accurate boundary inference and semantic enhancement, edge-aware feature maps in low-level layers and the predicted results of low resolution features are recursively embedded into the learning framework. By aggregating multi-level convolutional features in this efficient and flexible manner, the proposed saliency model provides accurate salient object labeling. Comprehensive experiments demonstrate that our method performs favorably against state-of-the-art approaches in terms of near all compared evaluation metrics.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237293&isnumber=8237262

23. Learning Uncertain Convolutional Features for Accurate Saliency Detection

Abstract: Deep convolutional neural networks (CNNs) have delivered superior performance in many computer vision tasks. In this paper, we propose a novel deep fully convolutional network model for accurate salient object detection. The key contribution of this work is to learn deep uncertain convolutional features (UCF), which encourage the robustness and accuracy of saliency detection. We achieve this via introducing a reformulated dropout (R-dropout) after specific convolutional layers to construct an uncertain ensemble of internal feature units. In addition, we propose an effective hybrid upsampling method to reduce the checkerboard artifacts of deconvolution operators in our decoder network. The proposed methods can also be applied to other deep convolutional networks. Compared with existing saliency detection methods, the proposed UCF model is able to incorporate uncertainties for more accurate object boundary inference. Extensive experiments demonstrate that our proposed saliency model performs favorably against state-of-the-art approaches. The uncertain feature learning mechanism as well as the upsampling method can significantly improve performance on other pixel-wise vision tasks.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237294&isnumber=8237262

24. Zero-Order Reverse Filtering

Abstract: In this paper, we study an unconventional but practically meaningful reversibility problem of commonly used image filters. We broadly define filters as operations to smooth images or to produce layers via global or local algorithms. And we raise the intriguingly problem if they are reservable to the status before filtering. To answer it, we present a novel strategy to understand general filter via contraction mappings on a metric space. A very simple yet effective zero-order algorithm is proposed. It is able to practically reverse most filters with low computational cost. We present quite a few experiments in the paper and supplementary file to thoroughly verify its performance. This method can also be generalized to solve other inverse problems and enables new applications.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237295&isnumber=8237262

25. Learning Blind Motion Deblurring

Abstract: As handheld video cameras are now commonplace and available in every smartphone, images and videos can be recorded almost everywhere at anytime. However, taking a quick shot frequently yields a blurry result due to unwanted camera shake during recording or moving objects in the scene. Removing these artifacts from the blurry recordings is a highly ill-posed problem as neither the sharp image nor the motion blur kernel is known. Propagating information between multiple consecutive blurry observations can help restore the desired sharp image or video. In this work, we propose an efficient approach to produce a significant amount of realistic training data and introduce a novel recurrent network architecture to deblur frames taking temporal information into account, which can efficiently handle arbitrary spatial and temporal input sizes.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237296&isnumber=8237262

26. Joint Adaptive Sparsity and Low-Rankness on the Fly: An Online Tensor Reconstruction Scheme for Video Denoising

Abstract: Recent works on adaptive sparse and low-rank signal modeling have demonstrated their usefulness, especially in image/video processing applications. While a patch-based sparse model imposes local structure, low-rankness of the grouped patches exploits non-local correlation. Applying either approach alone usually limits performance in various low-level vision tasks. In this work, we propose a novel video denoising method, based on an online tensor reconstruction scheme with a joint adaptive sparse and low-rank model, dubbed SALT. An efficient and unsupervised online unitary sparsifying transform learning method is introduced to impose adaptive sparsity on the fly. We develop an efficient 3D spatio-temporal data reconstruction framework based on the proposed online learning method, which exhibits low latency and can potentially handle streaming videos. To the best of our knowledge, this is the first work that combines adaptive sparsity and low-rankness for video denoising, and the first work of solving the proposed problem in an online fashion. We demonstrate video denoising results over commonly used videos from public datasets. Numerical experiments show that the proposed video denoising method outperforms competing methods.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237297&isnumber=8237262

27. Learning to Super-Resolve Blurry Face and Text Images

Abstract: We present an algorithm to directly restore a clear highresolution image from a blurry low-resolution input. This problem is highly ill-posed and the basic assumptions for existing super-resolution methods (requiring clear input) and deblurring methods (requiring high-resolution input) no longer hold. We focus on face and text images and adopt a generative adversarial network (GAN) to learn a category-specific prior to solve this problem. However, the basic GAN formulation does not generate realistic high-resolution images. In this work, we introduce novel training losses that help recover fine details. We also present a multi-class GAN that can process multi-class image restoration tasks, i.e., face and text images, using a single generator network. Extensive experiments demonstrate that our method performs favorably against the state-of-the-art methods on both synthetic and real-world images at a lower computational cost.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237298&isnumber=8237262

28. Video Frame Interpolation via Adaptive Separable Convolution

Abstract: Standard video frame interpolation methods first estimate optical flow between input frames and then synthesize an intermediate frame guided by motion. Recent approaches merge these two steps into a single convolution process by convolving input frames with spatially adaptive kernels that account for motion and re-sampling simultaneously. These methods require large kernels to handle large motion, which limits the number of pixels whose kernels can be estimated at once due to the large memory demand. To address this problem, this paper formulates frame interpolation as local separable convolution over input frames using pairs of 1D kernels. Compared to regular 2D kernels, the 1D kernels require significantly fewer parameters to be estimated. Our method develops a deep fully convolutional neural network that takes two input frames and estimates pairs of 1D kernels for all pixels simultaneously. Since our method is able to estimate kernels and synthesizes the whole video frame at once, it allows for the incorporation of perceptual loss to train the neural network to produce visually pleasing frames. This deep neural network is trained end-to-end using widely available video data without any human annotation. Both qualitative and quantitative experiments show that our method provides a practical solution to high-quality video frame interpolation.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237299&isnumber=8237262

29. Deep Occlusion Reasoning for Multi-camera Multi-target Detection

Abstract: People detection in single 2D images has improved greatly in recent years. However, comparatively little of this progress has percolated into multi-camera multi-people tracking algorithms, whose performance still degrades severely when scenes become very crowded. In this work, we introduce a new architecture that combines Convolutional Neural Nets and Conditional Random Fields to explicitly model those ambiguities. One of its key ingredients are high-order CRF terms that model potential occlusions and give our approach its robustness even when many people are present. Our model is trained end-to-end and we show that it outperforms several state-of-the-art algorithms on challenging scenes.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237300&isnumber=8237262

30. Encouraging LSTMs to Anticipate Actions Very Early

Abstract: In contrast to the widely studied problem of recognizing an action given a complete sequence, action anticipation aims to identify the action from only partially available videos. As such, it is therefore key to the success of computer vision applications requiring to react as early as possible, such as autonomous navigation. In this paper, we propose a new action anticipation method that achieves high prediction accuracy even in the presence of a very small percentage of a video sequence. To this end, we develop a multi-stage LSTM architecture that leverages context-aware and action-aware features, and introduce a novel loss function that encourages the model to predict the correct class as early as possible. Our experiments on standard benchmark datasets evidence the benefits of our approach; We outperform the state-of-the-art action anticipation methods for early prediction by a relative increase in accuracy of 22.0% on JHMDB-21, 14.0% on UT-Interaction and 49.9% on UCF-101.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237301&isnumber=8237262

31. PathTrack: Fast Trajectory Annotation with Path Supervision

Abstract: Progress in Multiple Object Tracking (MOT) has been historically limited by the size of the available datasets. We present an efficient framework to annotate trajectories and use it to produce a MOT dataset of unprecedented size. In our novel path supervision the annotator loosely follows the object with the cursor while watching the video, providing a path annotation for each object in the sequence. Our approach is able to turn such weak annotations into dense box trajectories. Our experiments on existing datasets prove that our framework produces more accurate annotations than the state of the art, in a fraction of the time. We further validate our approach by crowdsourcing the PathTrack dataset, with more than 15,000 person trajectories in 720 sequences. Tracking approaches can benefit training on such large-scale datasets, as did object recognition. We prove this by re-training an off-the-shelf person matching network, originally trained on the MOT15 dataset, almost halving the misclassification rate. Additionally, training on our data consistently improves tracking results, both on our dataset and on MOT15. On the latter, we improve the top-performing tracker (NOMT) dropping the number of ID Switches by 18% and fragments by 5%.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237302&isnumber=8237262

32. Tracking the Untrackable: Learning to Track Multiple Cues with Long-Term Dependencies

Abstract: The majority of existing solutions to the Multi-Target Tracking (MTT) problem do not combine cues over a long period of time in a coherent fashion. In this paper, we present an online method that encodes long-term temporal dependencies across multiple cues. One key challenge of tracking methods is to accurately track occluded targets or those which share similar appearance properties with surrounding objects. To address this challenge, we present a structure of Recurrent Neural Networks (RNN) that jointly reasons on multiple cues over a temporal window. Our method allows to correct data association errors and recover observations from occluded states. We demonstrate the robustness of our data-driven approach by tracking multiple targets using their appearance, motion, and even interactions. Our method outperforms previous works on multiple publicly available datasets including the challenging MOT benchmark.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237303&isnumber=8237262

33. MirrorFlow: Exploiting Symmetries in Joint Optical Flow and Occlusion Estimation

Abstract: Optical flow estimation is one of the most studied problems in computer vision, yet recent benchmark datasets continue to reveal problem areas of today’s approaches. Occlusions have remained one of the key challenges. In this paper, we propose a symmetric optical flow method to address the well-known chicken-and-egg relation between optical flow and occlusions. In contrast to many state-of-the-art methods that consider occlusions as outliers, possibly filtered out during post-processing, we highlight the importance of joint occlusion reasoning in the optimization and show how to utilize occlusion as an important cue for estimating optical flow. The key feature of our model is to fully exploit the symmetry properties that characterize optical flow and occlusions in the two consecutive images. Specifically through utilizing forward-backward consistency and occlusion-disocclusion symmetry in the energy, our model jointly estimates optical flow in both forward and backward direction, as well as consistent occlusion maps in both views. We demonstrate significant performance benefits on standard benchmarks, especially from the occlusion-disocclusion symmetry. On the challenging KITTI dataset we report the most accurate two-frame results to date.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237304&isnumber=8237262

34. Tracking as Online Decision-Making: Learning a Policy from Streaming Videos with Reinforcement Learning

Abstract: We formulate tracking as an online decision-making process, where a tracking agent must follow an object despite ambiguous image frames and a limited computational bud- get. Crucially, the agent must decide where to look in the upcoming frames, when to reinitialize because it believes the target has been lost, and when to update its appearance model for the tracked object. Such decisions are typically made heuristically. Instead, we propose to learn an optimal decision-making policy by formulating tracking as a partially observable decision-making process (POMDP). We learn policies with deep reinforcement learning algorithms that need supervision (a reward signal) only when the track has gone awry. We demonstrate that sparse rewards al- low us to quickly train on massive datasets, several orders of magnitude more than past work. Interestingly, by treat- ing the data source of Internet videos as unlimited streams, we both learn and evaluate our trackers in a single, unified computational stream.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237305&isnumber=8237262

35. Non-convex Rank/Sparsity Regularization and Local Minima

Abstract: This paper considers the problem of recovering either a low rank matrix or a sparse vector from observations of linear combinations of the vector or matrix elements. Recent methods replace the non-convex regularization with ℓ1 or nuclear norm relaxations. It is well known that this approach recovers near optimal solutions if a so called restricted isometry property (RIP) holds. On the other hand it also has a shrinking bias which can degrade the solution. In this paper we study an alternative non-convex regularization term that does not suffer from this bias. Our main theoretical results show that if a RIP holds then the stationary points are often well separated, in the sense that their differences must be of high cardinality/rank. Thus, with a suitable initial solution the approach is unlikely to fall into a bad local minimum. Our numerical tests show that the approach is likely to converge to a better solution than standard ℓ1/nuclear-norm relaxation even when starting from trivial initializations. In many cases our results can also be used to verify global optimality of our method.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237306&isnumber=8237262

36. A Revisit of Sparse Coding Based Anomaly Detection in Stacked RNN Framework

Abstract: Motivated by the capability of sparse coding based anomaly detection, we propose a Temporally-coherent Sparse Coding (TSC) where we enforce similar neighbouring frames be encoded with similar reconstruction coefficients. Then we map the TSC with a special type of stacked Recurrent Neural Network (sRNN). By taking advantage of sRNN in learning all parameters simultaneously, the nontrivial hyper-parameter selection to TSC can be avoided, meanwhile with a shallow sRNN, the reconstruction coefficients can be inferred within a forward pass, which reduces the computational cost for learning sparse coefficients. The contributions of this paper are two-fold: i) We propose a TSC, which can be mapped to a sRNN which facilitates the parameter optimization and accelerates the anomaly prediction. ii) We build a very large dataset which is even larger than the summation of all existing dataset for anomaly detection in terms of both the volume of data and the diversity of scenes. Extensive experiments on both a toy dataset and real datasets demonstrate that our TSC based and sRNN based method consistently outperform existing methods, which validates the effectiveness of our method.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237307&isnumber=8237262

37. HydraPlus-Net: Attentive Deep Features for Pedestrian Analysis

Abstract: Pedestrian analysis plays a vital role in intelligent video surveillance and is a key component for security-centric computer vision systems. Despite that the convolutional neural networks are remarkable in learning discriminative features from images, the learning of comprehensive features of pedestrians for fine-grained tasks remains an open problem. In this study, we propose a new attentionbased deep neural network, named as HydraPlus-Net (HPnet), that multi-directionally feeds the multi-level attention maps to different feature layers. The attentive deep features learned from the proposed HP-net bring unique advantages: (1) the model is capable of capturing multiple attentions from low-level to semantic-level, and (2) it explores the multi-scale selectiveness of attentive features to enrich the final feature representations for a pedestrian image. We demonstrate the effectiveness and generality of the proposed HP-net for pedestrian analysis on two tasks, i.e. pedestrian attribute recognition and person reidentification. Intensive experimental results have been provided to prove that the HP-net outperforms the state-of-theart methods on various datasets.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237308&isnumber=8237262

38. No Fuss Distance Metric Learning Using Proxies

Abstract: We address the problem of distance metric learning (DML), defined as learning a distance consistent with a notion of semantic similarity. Traditionally, for this problem supervision is expressed in the form of sets of points that follow an ordinal relationship - an anchor point x is similar to a set of positive points Y , and dissimilar to a set of negative points Z, and a loss defined over these distances is minimized. While the specifics of the optimization differ, in this work we collectively call this type of supervision Triplets and all methods that follow this pattern Triplet-Based methods. These methods are challenging to optimize. A main issue is the need for finding informative triplets, which is usually achieved by a variety of tricks such as increasing the batch size, hard or semi-hard triplet mining, etc. Even with these tricks, the convergence rate of such methods is slow. In this paper we propose to optimize the triplet loss on a different space of triplets, consisting of an anchor data point and similar and dissimilar proxy points which are learned as well. These proxies approximate the original data points, so that a triplet loss over the proxies is a tight upper bound of the original loss. This proxy-based loss is empirically better behaved. As a result, the proxy-loss improves on state-of-art results for three standard zero-shot learning datasets, by up to 15% points, while converging three times as fast as other triplet-based losses.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237309&isnumber=8237262

39. Benchmarking and Error Diagnosis in Multi-instance Pose Estimation

Abstract: We propose a new method to analyze the impact of errors in algorithms for multi-instance pose estimation and a principled benchmark that can be used to compare them. We define and characterize three classes of errors - localization, scoring, and background - study how they are influenced by instance attributes and their impact on an algorithm’s performance. Our technique is applied to compare the two leading methods for human pose estimation on the COCO Dataset, measure the sensitivity of pose estimation with respect to instance size, type and number of visible keypoints, clutter due to multiple instances, and the relative score of instances. The performance of algorithms, and the types of error they make, are highly dependent on all these variables, but mostly on the number of keypoints and the clutter. The analysis and software tools we propose offer a novel and insightful approach for understanding the behavior of pose estimation algorithms and an effective method for measuring their strengths and weaknesses.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237310&isnumber=8237262

40. Orientation Invariant Feature Embedding and Spatial Temporal Regularization for Vehicle Re-identification

Abstract: In this paper, we tackle the vehicle Re-identification (ReID) problem which is of great importance in urban surveillance and can be used for multiple applications. In our vehicle ReID framework, an orientation invariant feature embedding module and a spatial-temporal regularization module are proposed. With orientation invariant feature embedding, local region features of different orientations can be extracted based on 20 key point locations and can be well aligned and combined. With spatial-temporal regularization, the log-normal distribution is adopted to model the spatial-temporal constraints and the retrieval results can be refined. Experiments are conducted on public vehicle ReID datasets and our proposed method achieves state-of-the-art performance. Investigations of the proposed framework is conducted, including the landmark regressor and comparisons with attention mechanism. Both the orientation invariant feature embedding and the spatio-temporal regularization achieve considerable improvements.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237311&isnumber=8237262

41. Fashion Forward: Forecasting Visual Style in Fashion

Abstract: What is the future of fashion? Tackling this question from a data-driven vision perspective, we propose to forecast visual style trends before they occur. We introduce the first approach to predict the future popularity of styles discovered from fashion images in an unsupervised manner. Using these styles as a basis, we train a forecasting model to represent their trends over time. The resulting model can hypothesize new mixtures of styles that will become popular in the future, discover style dynamics (trendy vs. classic), and name the key visual attributes that will dominate tomorrow’s fashion. We demonstrate our idea applied to three datasets encapsulating 80,000 fashion products sold across six years on Amazon. Results indicate that fashion forecasting benefits greatly from visual analysis, much more than textual or meta-data cues surrounding products.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237312&isnumber=8237262

42. Towards 3D Human Pose Estimation in the Wild: A Weakly-Supervised Approach

Abstract: In this paper, we study the task of 3D human pose estimation in the wild. This task is challenging due to lack of training data, as existing datasets are either in the wild images with 2D pose or in the lab images with 3D pose. We propose a weakly-supervised transfer learning method that uses mixed 2D and 3D labels in a unified deep neutral network that presents two-stage cascaded structure. Our network augments a state-of-the-art 2D pose estimation sub-network with a 3D depth regression sub-network. Unlike previous two stage approaches that train the two sub-networks sequentially and separately, our training is end-to-end and fully exploits the correlation between the 2D pose and depth estimation sub-tasks. The deep features are better learnt through shared representations. In doing so, the 3D pose labels in controlled lab environments are transferred to in the wild images. In addition, we introduce a 3D geometric constraint to regularize the 3D pose prediction, which is effective in the absence of ground truth depth labels. Our method achieves competitive results on both 2D and 3D benchmarks.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237313&isnumber=8237262

43. Flow-Guided Feature Aggregation for Video Object Detection

Abstract: Extending state-of-the-art object detectors from image to video is challenging. The accuracy of detection suffers from degenerated object appearances in videos, e.g., motion blur, video defocus, rare poses, etc. Existing work attempts to exploit temporal information on box level, but such methods are not trained end-to-end. We present flow-guided feature aggregation, an accurate and end-to-end learning framework for video object detection. It leverages temporal coherence on feature level instead. It improves the per-frame features by aggregation of nearby features along the motion paths, and thus improves the video recognition accuracy. Our method significantly improves upon strong singleframe baselines in ImageNet VID [33], especially for more challenging fast moving objects. Our framework is principled, and on par with the best engineered systems winning the ImageNet VID challenges 2016, without additional bells-and-whistles. The code would be released.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237314&isnumber=8237262

44. Reasoning About Fine-Grained Attribute Phrases Using Reference Games

Abstract: We present a framework for learning to describe finegrained visual differences between instances using attribute phrases. Attribute phrases capture distinguishing aspects of an object (e.g., “propeller on the nose” or “door near the wing” for airplanes) in a compositional manner. Instances within a category can be described by a set of these phrases and collectively they span the space of semantic attributes for a category. We collect a large dataset of such phrases by asking annotators to describe several visual differences between a pair of instances within a category. We then learn to describe and ground these phrases to images in the context of a reference game between a speaker and a listener. The goal of a speaker is to describe attributes of an image that allows the listener to correctly identify it within a pair. Data collected in a pairwise manner improves the ability of the speaker to generate, and the ability of the listener to interpret visual descriptions. Moreover, due to the compositionality of attribute phrases, the trained listeners can interpret descriptions not seen during training for image retrieval, and the speakers can generate attribute-based explanations for differences between previously unseen categories. We also show that embedding an image into the semantic space of attribute phrases derived from listeners offers 20% improvement in accuracy over existing attributebased representations on the FGVC-aircraft dataset.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237315&isnumber=8237262

45. DeNet: Scalable Real-Time Object Detection with Directed Sparse Sampling

Abstract: We define the object detection from imagery problem as estimating a very large but extremely sparse bounding box dependent probability distribution. Subsequently we identify a sparse distribution estimation scheme, Directed Sparse Sampling, and employ it in a single end-to-end CNN based detection model. This methodology extends and formalizes previous state-of-the-art detection models with an additional emphasis on high evaluation rates and reduced manual engineering. We introduce two novelties, a corner based region-of-interest estimator and a deconvolution based CNN model. The resulting model is scene adaptive, does not require manually defined reference bounding boxes and produces highly competitive results on MSCOCO, Pascal VOC 2007 and Pascal VOC 2012 with real-time evaluation rates. Further analysis suggests our model performs particularly well when finegrained object localization is desirable. We argue that this advantage stems from the significantly larger set of available regions-of-interest relative to other methods. Source-code is available from: https://github.com/lachlants/denet.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237316&isnumber=8237262

46. MIHash: Online Hashing with Mutual Information

Abstract: Learning-based hashing methods are widely used for nearest neighbor retrieval, and recently, online hashing methods have demonstrated good performance-complexity trade-offs by learning hash functions from streaming data. In this paper, we first address a key challenge for online hashing: the binary codes for indexed data must be recomputed to keep pace with updates to the hash functions. We propose an efficient quality measure for hash functions, based on an information-theoretic quantity, mutual information, and use it successfully as a criterion to eliminate unnecessary hash table updates. Next, we also show how to optimize the mutual information objective using stochastic gradient descent. We thus develop a novel hashing method, MIHash, that can be used in both online and batch settings. Experiments on image retrieval benchmarks (including a 2.5M image dataset) confirm the effectiveness of our formulation, both in reducing hash table recomputations and in learning high-quality hash functions.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237317&isnumber=8237262

47. SafetyNet: Detecting and Rejecting Adversarial Examples Robustly

Abstract: We describe a method to produce a network where current methods such as DeepFool have great difficulty producing adversarial samples. Our construction suggests some insights into how deep networks work. We provide a reasonable analyses that our construction is difficult to defeat, and show experimentally that our method is hard to defeat with both Type I and Type II attacks using several standard networks and datasets. This SafetyNet architecture is used to an important and novel application SceneProof, which can reliably detect whether an image is a picture of a real scene or not. SceneProof applies to images captured with depth maps (RGBD images) and checks if a pair of image and depth map is consistent. It relies on the relative difficulty of producing naturalistic depth maps for images in post processing. We demonstrate that our SafetyNet is robust to adversarial examples built from currently known attacking approaches.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237318&isnumber=8237262

48. Recurrent Models for Situation Recognition

Abstract: This work proposes Recurrent Neural Network (RNN) models to predict structured ‘image situations’ - actions and noun entities fulfilling semantic roles related to the action. In contrast to prior work relying on Conditional Random Fields (CRFs), we use a specialized action prediction network followed by an RNN for noun prediction. Our system obtains state-of-the-art accuracy on the challenging recent imSitu dataset, beating CRF-based models, including ones trained with additional data. Further, we show that specialized features learned from situation prediction can be transferred to the task of image captioning to more accurately describe human-object interactions.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237319&isnumber=8237262

49. Multi-label Image Recognition by Recurrently Discovering Attentional Regions

Abstract: This paper proposes a novel deep architecture to address multi-label image recognition, a fundamental and practical task towards general visual understanding. Current solutions for this task usually rely on an extra step of extracting hypothesis regions (i.e., region proposals), resulting in redundant computation and sub-optimal performance. In this work, we achieve the interpretable and contextualized multi-label image classification by developing a recurrent memorized-attention module. This module consists of two alternately performed components: i) a spatial transformer layer to locate attentional regions from the convolutional feature maps in a region-proposal-free way and ii) an LSTM (Long-Short Term Memory) sub-network to sequentially predict semantic labeling scores on the located regions while capturing the global dependencies of these regions. The LSTM also output the parameters for computing the spatial transformer. On large-scale benchmarks of multi-label image classification (e.g., MS-COCO and PASCAL VOC 07), our approach demonstrates superior performances over other existing state-of-the-arts in both accuracy and efficiency.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237320&isnumber=8237262

50. Deep Determinantal Point Process for Large-Scale Multi-label Classification

Abstract: We study large-scale multi-label classification (MLC) on two recently released datasets: Youtube-8M and Open Images that contain millions of data instances and thousands of classes. The unprecedented problem scale poses great challenges for MLC. First, finding out the correct label subset out of exponentially many choices incurs substantial ambiguity and uncertainty. Second, the large data-size and class-size entail considerable computational cost. To address the first challenge, we investigate two strategies: capturing label-correlations from the training data and incorporating label co-occurrence relations obtained from external knowledge, which effectively eliminate semantically inconsistent labels and provide contextual clues to differentiate visually ambiguous labels. Specifically, we propose a Deep Determinantal Point Process (DDPP) model which seamlessly integrates a DPP with deep neural networks (DNNs) and supports end-to-end multi-label learning and deep representation learning. The DPP is able to capture label-correlations of any order with a polynomial computational cost, while the DNNs learn hierarchical features of images/videos and capture the dependency between input data and labels. To incorporate external knowledge about label co-occurrence relations, we impose relational regularization over the kernel matrix in DDPP. To address the second challenge, we study an efficient low-rank kernel learning algorithm based on inducing point methods. Experiments on the two datasets demonstrate the efficacy and efficiency of the proposed methods.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237321&isnumber=8237262

51. Visual Semantic Planning Using Deep Successor Representations

Abstract: A crucial capability of real-world intelligent agents is their ability to plan a sequence of actions to achieve their goals in the visual world. In this work, we address the problem of visual semantic planning: the task of predicting a sequence of actions from visual observations that transform a dynamic environment from an initial state to a goal state. Doing so entails knowledge about objects and their affordances, as well as actions and their preconditions and effects. We propose learning these through interacting with a visual and dynamic environment. Our proposed solution involves bootstrapping reinforcement learning with imitation learning. To ensure cross task generalization, we develop a deep predictive model based on successor representations. Our experimental results show near optimal results across a wide range of tasks in the challenging THOR environment.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237322&isnumber=8237262

52. Neural Person Search Machines

Abstract: We investigate the problem of person search in the wild in this work. Instead of comparing the query against all candidate regions generated in a query-blind manner, we propose to recursively shrink the search area from the whole image till achieving precise localization of the target person, by fully exploiting information from the query and contextual cues in every recursive search step. We develop the Neural Person Search Machines (NPSM) to implement such recursive localization for person search. Benefiting from its neural search mechanism, NPSM is able to selectively shrink its focus from a loose region to a tighter one containing the target automatically. In this process, NPSM employs an internal primitive memory component to memorize the query representation which modulates the attention and augments its robustness to other distracting regions. Evaluations on two benchmark datasets, CUHK-SYSU Person Search dataset and PRW dataset, have demonstrated that our method can outperform current state-of-the-arts in both mAP and top-1 evaluation protocols.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237323&isnumber=8237262

53. DualNet: Learn Complementary Features for Image Recognition

Abstract: In this work we propose a novel framework named Dual-Net aiming at learning more accurate representation for image recognition. Here two parallel neural networks are coordinated to learn complementary features and thus a wider network is constructed. Specifically, we logically divide an end-to-end deep convolutional neural network into two functional parts, i.e., feature extractor and image classifier. The extractors of two subnetworks are placed side by side, which exactly form the feature extractor of DualNet. Then the two-stream features are aggregated to the final classifier for overall classification, while two auxiliary classifiers are appended behind the feature extractor of each subnetwork to make the separately learned features discriminative alone. The complementary constraint is imposed by weighting the three classifiers, which is indeed the key of DualNet. The corresponding training strategy is also proposed, consisting of iterative training and joint fine tuning, to make the two subnetworks cooperate well with each other. Finally, DualNet based on the well-known CaffeNet, VGGNet, NIN and ResNet are thoroughly investigated and experimentally evaluated on multiple datasets including CIFAR-100, Stanford Dogs and UEC FOOD-100. The results demonstrate that DualNet can really help learn more accurate image representation, and thus result in higher accuracy for recognition. In particular, the performance on CIFAR-100 is state-of-the-art compared to the recent works.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237324&isnumber=8237262

54. Higher-Order Integration of Hierarchical Convolutional Activations for Fine-Grained Visual Categorization

Abstract: The success of fine-grained visual categorization (FGVC) extremely relies on the modeling of appearance and interactions of various semantic parts. This makes FGVC very challenging because: (i) part annotation and detection require expert guidance and are very expensive; (ii) parts are of different sizes; and (iii) the part interactions are complex and of higher-order. To address these issues, we propose an end-to-end framework based on higher-order integration of hierarchical convolutional activations for FGVC. By treating the convolutional activations as local descriptors, hierarchical convolutional activations can serve as a representation of local parts from different scales. A polynomial kernel based predictor is proposed to capture higher-order statistics of convolutional activations for modeling part interaction. To model inter-layer part interactions, we extend polynomial predictor to integrate hierarchical activations via kernel fusion. Our work also provides a new perspective for combining convolutional activations from multiple layers. While hypercolumns simply concatenate maps from different layers, and holistically-nested network uses weighted fusion to combine side-outputs, our approach exploits higher-order intra-layer and inter-layer relations for better integration of hierarchical convolutional features. The proposed framework yields more discriminative representation and achieves competitive results on the widely used FGVC datasets.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237325&isnumber=8237262

55. Show, Adapt and Tell: Adversarial Training of Cross-Domain Image Captioner

Abstract: Impressive image captioning results are achieved in domains with plenty of training image and sentence pairs (e.g., MSCOCO). However, transferring to a target domain with significant domain shifts but no paired training data (referred to as cross-domain image captioning) remains largely unexplored. We propose a novel adversarial training procedure to leverage unpaired data in the target domain. Two critic networks are introduced to guide the captioner, namely domain critic and multi-modal critic. The domain critic assesses whether the generated sentences are indistinguishable from sentences in the target domain. The multi-modal critic assesses whether an image and its generated sentence are a valid pair. During training, the critics and captioner act as adversaries - captioner aims to generate indistinguishable sentences, whereas critics aim at distinguishing them. The assessment improves the captioner through policy gradient updates. During inference, we further propose a novel critic-based planning method to select high-quality sentences without additional supervision (e.g., tags). To evaluate, we use MSCOCO as the source domain and four other datasets (CUB-200-2011, Oxford-102, TGIF, and Flickr30k) as the target domains. Our method consistently performs well on all datasets. In particular, on CUB-200-2011, we achieve 21.8% CIDEr-D improvement after adaptation. Utilizing critics during inference further gives another 4.5% boost.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237326&isnumber=8237262

56. Attribute Recognition by Joint Recurrent Learning of Context and Correlation

Abstract: Recognising semantic pedestrian attributes in surveillance images is a challenging task for computer vision, particularly when the imaging quality is poor with complex background clutter and uncontrolled viewing conditions, and the number of labelled training data is small. In this work, we formulate a Joint Recurrent Learning (JRL) model for exploring attribute context and correlation in order to improve attribute recognition given small sized training data with poor quality images. The JRL model learns jointly pedestrian attribute correlations in a pedestrian image and in particular their sequential ordering dependencies (latent high-order correlation) in an end-to-end encoder/ decoder recurrent network. We demonstrate the performance advantage and robustness of the JRL model over a wide range of state-of-the-art deep models for pedestrian attribute recognition, multi-label image classification, and multi-person image annotation on two largest pedestrian attribute benchmarks PETA and RAP.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237327&isnumber=8237262

57. VegFru: A Domain-Specific Dataset for Fine-Grained Visual Categorization

Abstract: In this paper, we propose a novel domain-specific dataset named VegFru for fine-grained visual categorization (FGVC). While the existing datasets for FGVC are mainly focused on animal breeds or man-made objects with limited labelled data, VegFru is a larger dataset consisting of vegetables and fruits which are closely associated with the daily life of everyone. Aiming at domestic cooking and food management, VegFru categorizes vegetables and fruits according to their eating characteristics, and each image contains at least one edible part of vegetables or fruits with the same cooking usage. Particularly, all the images are labelled hierarchically. The current version covers vegetables and fruits of 25 upper-level categories and 292 subordinate classes. And it contains more than 160,000 images in total and at least 200 images for each subordinate class. Accompanying the dataset, we also propose an effective framework called HybridNet to exploit the label hierarchy for FGVC. Specifically, multiple granularity features are first extracted by dealing with the hierarchical labels separately. And then they are fused through explicit operation, e.g., Compact Bilinear Pooling, to form a unified representation for the ultimate recognition. The experimental results on the novel VegFru, the public FGVC-Aircraft and CUB-200-2011 indicate that HybridNet achieves one of the top performance on these datasets. The dataset and code are available at https://github.com/ustc-vim/vegfru.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237328&isnumber=8237262

58. Increasing CNN Robustness to Occlusions by Reducing Filter Support

Abstract: Convolutional neural networks (CNNs) provide the current state of the art in visual object classification, but they are far less accurate when classifying partially occluded objects. A straightforward way to improve classification under occlusion conditions is to train the classifier using partially occluded object examples. However, training the network on many combinations of object instances and occlusions may be computationally expensive. This work proposes an alternative approach to increasing the robustness of CNNs to occlusion. We start by studying the effect of partial occlusions on the trained CNN and show, empirically, that training on partially occluded examples reduces the spatial support of the filters. Building upon this finding, we argue that smaller filter support is beneficial for occlusion robustness. We propose a training process that uses a special regularization term that acts to shrink the spatial support of the filters. We consider three possible regularization terms that are based on second central moments, group sparsity, and mutually reweighted L1, respectively. When trained on normal (unoccluded) examples, the resulting classifier is highly robust to occlusions. For large training sets and limited training time, the proposed classifier is even more accurate than standard classifiers trained on occluded object examples.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237329&isnumber=8237262

59. Exploiting Multi-grain Ranking Constraints for Precisely Searching Visually-similar Vehicles

Abstract: Precise search of visually-similar vehicles poses a great challenge in computer vision, which needs to find exactly the same vehicle among a massive vehicles with visually similar appearances for a given query image. In this paper, we model the relationship of vehicle images as multiple grains. Following this, we propose two approaches to alleviate the precise vehicle search problem by exploiting multi-grain ranking constraints. One is Generalized Pairwise Ranking, which generalizes the conventional pairwise from considering only binary similar/dissimilar relations to multiple relations. The other is Multi-Grain based List Ranking, which introduces permutation probability to score a permutation of a multi-grain list, and further optimizes the ranking by the likelihood loss function. We implement the two approaches with multi-attribute classification in a multi-task deep learning framework. To further facilitate the research on precise vehicle search, we also contribute two high-quality and well-annotated vehicle datasets, named VD1 and VD2, which are collected from two different cities with diverse annotated attributes. As two of the largest publicly available precise vehicle search datasets, they contain 1,097,649 and 807,260 vehicle images respectively. Experimental results show that our approaches achieve the state-of-the-art performance on both datasets.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237330&isnumber=8237262

60. Recurrent Scale Approximation for Object Detection in CNN

Abstract: Since convolutional neural network (CNN) lacks an inherent mechanism to handle large scale variations, we always need to compute feature maps multiple times for multiscale object detection, which has the bottleneck of computational cost in practice. To address this, we devise a recurrent scale approximation (RSA) to compute feature map once only, and only through this map can we approximate the rest maps on other levels. At the core of RSA is the recursive rolling out mechanism: given an initial map on a particular scale, it generates the prediction on a smaller scale that is half the size of input. To further increase efficiency and accuracy, we (a): design a scale-forecast network to globally predict potential scales in the image since there is no need to compute maps on all levels of the pyramid. (b): propose a landmark retracing network (LRN) to retrace back locations of the regressed landmarks and generate a confidence score for each landmark; LRN can effectively alleviate false positives due to the accumulated error in RSA. The whole system could be trained end-to-end in a unified CNN framework. Experiments demonstrate that our proposed algorithm is superior against state-of-the-arts on face detection benchmarks and achieves comparable results for generic proposal generation. The source code of our system is available.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237331&isnumber=8237262

61. Embedding 3D Geometric Features for Rigid Object Part Segmentation

Abstract: Object part segmentation is a challenging and fundamental problem in computer vision. Its difficulties may be caused by the varying viewpoints, poses, and topological structures, which can be attributed to an essential reason, i.e., a specific object is a 3D model rather than a 2D figure. Therefore, we conjecture that not only 2D appearance features but also 3D geometric features could be helpful. With this in mind, we propose a 2-stream FCN. One stream, named AppNet, is to extract 2D appearance features from the input image. The other stream, named GeoNet, is to extract 3D geometric features. However, the problem is that the input is just an image. To this end, we design a 2D convolution based CNN structure to extract 3D geometric features from 3D volume, which is named VolNet. Then a teacher-student strategy is adopted and VolNet teaches GeoNet how to extract 3D geometric features from an image. To perform this teaching process, we synthesize training data using 3D models. Each training sample consists of an image and its corresponding volume. A perspective voxelization algorithm is further proposed to align them. Experimental results verify our conjecture and the effectiveness of both the proposed 2-stream CNN and VolNet.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237332&isnumber=8237262

62. Towards Context-Aware Interaction Recognition for Visual Relationship Detection

Abstract: Recognizing how objects interact with each other is a crucial task in visual recognition. If we define the context of the interaction to be the objects involved, then most current methods can be categorized as either: (i) training a single classifier on the combination of the interaction and its context; or (ii) aiming to recognize the interaction independently of its explicit context. Both methods suffer limitations: the former scales poorly with the number of combinations and fails to generalize to unseen combinations, while the latter often leads to poor interaction recognition performance due to the difficulty of designing a contextindependent interaction classifier.,,To mitigate those drawbacks, this paper proposes an alternative, context-aware interaction recognition framework. The key to our method is to explicitly construct an interaction classifier which combines the context, and the interaction. The context is encoded via word2vec into a semantic space, and is used to derive a classification result for the interaction. The proposed method still builds one classifier for one interaction (as per type (ii) above), but the classifier built is adaptive to context via weights which are context dependent. The benefit of using the semantic space is that it naturally leads to zero-shot generalizations in which semantically similar contexts (subject-object pairs) can be recognized as suitable contexts for an interaction, even if they were not observed in the training set. Our method also scales with the number of interaction-context pairs since our model parameters do not increase with the number of interactions. Thus our method avoids the limitation of both approaches. We demonstrate experimentally that the proposed framework leads to improved performance for all investigated interaction representations and datasets.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237333&isnumber=8237262

63. When Unsupervised Domain Adaptation Meets Tensor Representations

Abstract: Domain adaption (DA) allows machine learning methods trained on data sampled from one distribution to be applied to data sampled from another. It is thus of great practical importance to the application of such methods. Despite the fact that tensor representations are widely used in Computer Vision to capture multi-linear relationships that affect the data, most existing DA methods are applicable to vectors only. This renders them incapable of reflecting and preserving important structure in many problems. We thus propose here a learning-based method to adapt the source and target tensor representations directly, without vectorization. In particular, a set of alignment matrices is introduced to align the tensor representations from both domains into the invariant tensor subspace. These alignment matrices and the tensor subspace are modeled as a joint optimization problem and can be learned adaptively from the data using the proposed alternative minimization scheme. Extensive experiments show that our approach is capable of preserving the discriminative power of the source domain, of resisting the effects of label noise, and works effectively for small sample sizes, and even one-shot DA. We show that our method outperforms the state-of-the-art on the task of cross-domain visual recognition in both efficacy and efficiency, and particularly that it outperforms all comparators when applied to DA of the convolutional activations of deep convolutional networks.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237334&isnumber=8237262

64. Look, Listen and Learn

Abstract: We consider the question: what can be learnt by looking at and listening to a large number of unlabelled videos? There is a valuable, but so far untapped, source of information contained in the video itself - the correspondence between the visual and the audio streams, and we introduce a novel “Audio-Visual Correspondence” learning task that makes use of this. Training visual and audio networks from scratch, without any additional supervision other than the raw unconstrained videos themselves, is shown to successfully solve this task, and, more interestingly, result in good visual and audio representations. These features set the new state-of-the-art on two sound classification benchmarks, and perform on par with the state-of-the-art selfsupervised approaches on ImageNet classification. We also demonstrate that the network is able to localize objects in both modalities, as well as perform fine-grained recognition tasks.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237335&isnumber=8237262

65. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization

Abstract: We propose a technique for producing ‘visual explanations’ for decisions from a large class of Convolutional Neural Network (CNN)-based models, making them more transparent. Our approach - Gradient-weighted Class Activation Mapping (Grad-CAM), uses the gradients of any target concept (say logits for ‘dog’ or even a caption), flowing into the final convolutional layer to produce a coarse localization map highlighting the important regions in the image for predicting the concept. Unlike previous approaches, Grad- CAM is applicable to a wide variety of CNN model-families: (1) CNNs with fully-connected layers (e.g. VGG), (2) CNNs used for structured outputs (e.g. captioning), (3) CNNs used in tasks with multi-modal inputs (e.g. visual question answering) or reinforcement learning, without architectural changes or re-training. We combine Grad-CAM with existing fine-grained visualizations to create a high-resolution class-discriminative visualization, Guided Grad-CAM, and apply it to image classification, image captioning, and visual question answering (VQA) models, including ResNet-based architectures. In the context of image classification models, our visualizations (a) lend insights into failure modes of these models (showing that seemingly unreasonable predictions have reasonable explanations), (b) outperform previous methods on the ILSVRC-15 weakly-supervised localization task, (c) are more faithful to the underlying model, and (d) help achieve model generalization by identifying dataset bias. For image captioning and VQA, our visualizations show even non-attention based models can localize inputs. Finally, we design and conduct human studies to measure if Grad-CAM explanations help users establish appropriate trust in predictions from deep networks and show that Grad-CAM helps untrained users successfully discern a ‘stronger’ deep network from a ‘weaker’ one even when both make identical predictions. Our code is available at https: //github.com/ramprs/grad-cam/- along with a demo on CloudCV [2] and video at youtu.be/COjUB9Izk6E.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237336&isnumber=8237262

66. Image-Based Localization Using LSTMs for Structured Feature Correlation

Abstract: In this work we propose a new CNN+LSTM architecture for camera pose regression for indoor and outdoor scenes. CNNs allow us to learn suitable feature representations for localization that are robust against motion blur and illumination changes. We make use of LSTM units on the CNN output, which play the role of a structured dimensionality reduction on the feature vector, leading to drastic improvements in localization performance. We provide extensive quantitative comparison of CNN-based and SIFT-based localization methods, showing the weaknesses and strengths of each. Furthermore, we present a new large-scale indoor dataset with accurate ground truth from a laser scanner. Experimental results on both indoor and outdoor public datasets show our method outperforms existing deep architectures, and can localize images in hard conditions, e.g., in the presence of mostly textureless surfaces, where classic SIFT-based methods fail.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237337&isnumber=8237262

67. Personalized Image Aesthetics

Abstract: Automatic image aesthetics rating has received a growing interest with the recent breakthrough in deep learning. Although many studies exist for learning a generic or universal aesthetics model, investigation of aesthetics models incorporating individual user’s preference is quite limited. We address this personalized aesthetics problem by showing that individual’s aesthetic preferences exhibit strong correlations with content and aesthetic attributes, and hence the deviation of individual’s perception from generic image aesthetics is predictable. To accommodate our study, we first collect two distinct datasets, a large image dataset from Flickr and annotated by Amazon Mechanical Turk, and a small dataset of real personal albums rated by owners. We then propose a new approach to personalized aesthetics learning that can be trained even with a small set of annotated images from a user. The approach is based on a residual-based model adaptation scheme which learns an offset to compensate for the generic aesthetics score. Finally, we introduce an active learning algorithm to optimize personalized aesthetics prediction for real-world application scenarios. Experiments demonstrate that our approach can effectively learn personalized aesthetics preferences, and outperforms existing methods on quantitative comparisons.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237338&isnumber=8237262

68. Predicting Deeper into the Future of Semantic Segmentation

Abstract: The ability to predict and therefore to anticipate the future is an important attribute of intelligence. It is also of utmost importance in real-time systems, e.g. in robotics or autonomous driving, which depend on visual scene understanding for decision making. While prediction of the raw RGB pixel values in future video frames has been studied in previous work, here we introduce the novel task of predicting semantic segmentations of future frames. Given a sequence of video frames, our goal is to predict segmentation maps of not yet observed video frames that lie up to a second or further in the future. We develop an autoregressive convolutional neural network that learns to iteratively generate multiple frames. Our results on the Cityscapes dataset show that directly predicting future segmentations is substantially better than predicting and then segmenting future RGB frames. Prediction results up to half a second in the future are visually convincing and are much more accurate than those of a baseline based on warping semantic segmentations using optical flow.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237339&isnumber=8237262

69. Coordinating Filters for Faster Deep Neural Networks

Abstract: Very large-scale Deep Neural Networks (DNNs) have achieved remarkable successes in a large variety of computer vision tasks. However, the high computation intensity of DNNs makes it challenging to deploy these models on resource-limited systems. Some studies used low-rank approaches that approximate the filters by low-rank basis to accelerate the testing. Those works directly decomposed the pre-trained DNNs by Low-Rank Approximations (LRA). How to train DNNs toward lower-rank space for more efficient DNNs, however, remains as an open area. To solve the issue, in this work, we propose Force Regularization, which uses attractive forces to enforce filters so as to coordinate more weight information into lower-rank space1. We mathematically and empirically verify that after applying our technique, standard LRA methods can reconstruct filters using much lower basis and thus result in faster DNNs. The effectiveness of our approach is comprehensively evaluated in ResNets, AlexNet, and GoogLeNet. In AlexNet, for example, Force Regularization gains 2× speedup on modern GPU without accuracy loss and 4:05× speedup on CPU by paying small accuracy degradation. Moreover, Force Regularization better initializes the low-rank DNNs such that the fine-tuning can converge faster toward higher accuracy. The obtained lower-rank DNNs can be further sparsified, proving that Force Regularization can be integrated with state-of-the-art sparsity-based acceleration methods.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237340&isnumber=8237262

70. Unsupervised Representation Learning by Sorting Sequences

Abstract: We present an unsupervised representation learning approach using videos without semantic labels. We leverage the temporal coherence as a supervisory signal by formulating representation learning as a sequence sorting task. We take temporally shuffled frames (i.e., in non-chronological order) as inputs and train a convolutional neural network to sort the shuffled sequences. Similar to comparison-based sorting algorithms, we propose to extract features from all frame pairs and aggregate them to predict the correct order. As sorting shuffled image sequence requires an understanding of the statistical temporal structure of images, training with such a proxy task allows us to learn rich and generalizable visual representation. We validate the effectiveness of the learned representation using our method as pre-training on high-level recognition problems. The experimental results show that our method compares favorably against state-of-the-art methods on action recognition, image classification, and object detection tasks.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237341&isnumber=8237262

71. A Read-Write Memory Network for Movie Story Understanding

Abstract: We propose a novel memory network model named Read-Write Memory Network (RWMN) to perform question and answering tasks for large-scale, multimodal movie story understanding. The key focus of our RWMN model is to design the read network and the write network that consist of multiple convolutional layers, which enable memory read and write operations to have high capacity and flexibility. While existing memory-augmented network models treat each memory slot as an independent block, our use of multi-layered CNNs allows the model to read and write sequential memory cells as chunks, which is more reasonable to represent a sequential story because adjacent memory blocks often have strong correlations. For evaluation, we apply our model to all the six tasks of the MovieQA benchmark [24], and achieve the best accuracies on several tasks, especially on the visual QA task. Our model shows a potential to better understand not only the content in the story, but also more abstract information, such as relationships between characters and the reasons for their actions.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237342&isnumber=8237262

72. SegFlow: Joint Learning for Video Object Segmentation and Optical Flow

Abstract: This paper proposes an end-to-end trainable network, SegFlow, for simultaneously predicting pixel-wise object segmentation and optical flow in videos. The proposed SegFlow has two branches where useful information of object segmentation and optical flow is propagated bidirectionally in a unified framework. The segmentation branch is based on a fully convolutional network, which has been proved effective in image segmentation task, and the optical flow branch takes advantage of the FlowNet model. The unified framework is trained iteratively offline to learn a generic notion, and fine-tuned online for specific objects. Extensive experiments on both the video object segmentation and optical flow datasets demonstrate that introducing optical flow improves the performance of segmentation and vice versa, against the state-of-the-art algorithms.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237343&isnumber=8237262

73. Unsupervised Action Discovery and Localization in Videos

Abstract: This paper is the first to address the problem of unsupervised action localization in videos. Given unlabeled data without bounding box annotations, we propose a novel approach that: 1) Discovers action class labels and 2) Spatio-temporally localizes actions in videos. It begins by computing local video features to apply spectral clustering on a set of unlabeled training videos. For each cluster of videos, an undirected graph is constructed to extract a dominant set, which are known for high internal homogeneity and in-homogeneity between vertices outside it. Next, a discriminative clustering approach is applied, by training a classifier for each cluster, to iteratively select videos from the non-dominant set and obtain complete video action classes. Once classes are discovered, training videos within each cluster are selected to perform automatic spatio-temporal annotations, by first over-segmenting videos in each discovered class into supervoxels and constructing a directed graph to apply a variant of knapsack problem with temporal constraints. Knapsack optimization jointly collects a subset of supervoxels, by enforcing the annotated action to be spatio-temporally connected and its volume to be the size of an actor. These annotations are used to train SVM action classifiers. During testing, actions are localized using a similar Knapsack approach, where supervoxels are grouped together and SVM, learned using videos from discovered action classes, is used to recognize these actions. We evaluate our approach on UCF-Sports, Sub-JHMDB, JHMDB, THUMOS13 and UCF101 datasets. Our experiments suggest that despite using no action class labels and no bounding box annotations, we are able to get competitive results to the state-of-the-art supervised methods.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237344&isnumber=8237262

74. Dense-Captioning Events in Videos

Abstract: Most natural videos contain numerous events. For example, in a video of a “man playing a piano”, the video might also contain “another man dancing” or “a crowd clapping”. We introduce the task of dense-captioning events, which involves both detecting and describing events in a video. We propose a new model that is able to identify all events in a single pass of the video while simultaneously describing the detected events with natural language. Our model introduces a variant of an existing proposal module that is designed to capture both short as well as long events that span minutes. To capture the dependencies between the events in a video, our model introduces a new captioning module that uses contextual information from past and future events to jointly describe all events. We also introduce ActivityNet Captions, a large-scale benchmark for dense-captioning events. ActivityNet Captions contains 20k videos amounting to 849 video hours with 100k total descriptions, each with its unique start and end time. Finally, we report performances of our model for dense-captioning events, video retrieval and localization.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237345&isnumber=8237262

75. Learning Long-Term Dependencies for Action Recognition with a Biologically-Inspired Deep Network

Abstract: Despite a lot of research efforts devoted in recent years, how to efficiently learn long-term dependencies from sequences still remains a pretty challenging task. As one of the key models for sequence learning, recurrent neural network (RNN) and its variants such as long short term memory (LSTM) and gated recurrent unit (GRU) are still not powerful enough in practice. One possible reason is that they have only feedforward connections, which is different from the biological neural system that is typically composed of both feedforward and feedback connections. To address this problem, this paper proposes a biologicallyinspired deep network, called shuttleNet. Technologically, the shuttleNet consists of several processors, each of which is a GRU while associated with multiple groups of hidden states. Unlike traditional RNNs, all processors inside shuttleNet are loop connected to mimic the brain’s feedforward and feedback connections, in which they are shared across multiple pathways in the loop connection. Attention mechanism is then employed to select the best information flow pathway. Extensive experiments conducted on two benchmark datasets (i.e UCF101 and HMDB51) show that we can beat state-of-the-art methods by simply embedding shuttleNet into a CNN-RNN framework.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237346&isnumber=8237262

76. Compressive Quantization for Fast Object Instance Search in Videos

Abstract: Most of current visual search systems focus on image-to-image (point-to-point) search such as image and object retrieval. Nevertheless, fast image-to-video (point-to-set) search is much less exploited. This paper tackles object instance search in videos, where efficient point-to-set matching is essential. Through jointly optimizing vector quantization and hashing, we propose compressive quantization method to compressM object proposals extracted from each video into only k binary codes, where k ≪ M. Then the similarity between the query object and the whole video can be determined by the Hamming distance between the queryfs binary code and the videofs best-matched binary code. Our compressive quantization not only enables fast search but also significantly reduces the memory cost of storing the video features. Despite the high compression ratio, our proposed compressive quantization still can effec- tively retrieve small objects in large video datasets. System- atic experiments on three benchmark datasets verify the ef- fectiveness and efficiency of our compressive quantization.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237347&isnumber=8237262

77. Complex Event Detection by Identifying Reliable Shots from Untrimmed Videos

Abstract: The goal of complex event detection is to automatically detect whether an event of interest happens in temporally untrimmed long videos which usually consist of multiple video shots. Observing some video shots in positive (resp. negative) videos are irrelevant (resp. relevant) to the given event class, we formulate this task as a multi-instance learning (MIL) problem by taking each video as a bag and the video shots in each video as instances. To this end, we propose a new MIL method, which simultaneously learns a linear SVM classifier and infers a binary indicator for each instance in order to select reliable training instances from each positive or negative bag. In our new objective function, we balance the weighted training errors and a l1-l2 mixed-norm regularization term which adaptively selects reliable shots as training instances from different videos to have them as diverse as possible. We also develop an alternating optimization approach that can efficiently solve our proposed objective function. Extensive experiments on the challenging real-world Multimedia Event Detection (MED) datasets MEDTest-14, MEDTest-13 and CCV clearly demonstrate the effectiveness of our proposed MIL approach for complex event detection.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237348&isnumber=8237262

78. Deep Direct Regression for Multi-oriented Scene Text Detection

Abstract: In this paper, we first provide a new perspective to divide existing high performance object detection methods into direct and indirect regressions. Direct regression performs boundary regression by predicting the offsets from a given point, while indirect regression predicts the offsets from some bounding box proposals. In the context of multioriented scene text detection, we analyze the drawbacks of indirect regression, which covers the state-of-the-art detection structures Faster-RCNN and SSD as instances, and point out the potential superiority of direct regression. To verify this point of view, we propose a deep direct regression based method for multi-oriented scene text detection. Our detection framework is simple and effective with a fully convolutional network and one-step post processing. The fully convolutional network is optimized in an end-to-end way and has bi-task outputs where one is pixel-wise classification between text and non-text, and the other is direct regression to determine the vertex coordinates of quadrilateral text boundaries. The proposed method is particularly beneficial to localize incidental scene texts. On the ICDAR2015 Incidental Scene Text benchmark, our method achieves the F-measure of 81%, which is a new state-ofthe-art and significantly outperforms previous approaches. On other standard datasets with focused scene texts, our method also reaches the state-of-the-art performance.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237349&isnumber=8237262

79. Open Set Domain Adaptation

Abstract: When the training and the test data belong to different domains, the accuracy of an object classifier is significantly reduced. Therefore, several algorithms have been proposed in the last years to diminish the so called domain shift between datasets. However, all available evaluation protocols for domain adaptation describe a closed set recognition task, where both domains, namely source and target, contain exactly the same object classes. In this work, we also explore the field of domain adaptation in open sets, which is a more realistic scenario where only a few categories of interest are shared between source and target data. Therefore, we propose a method that fits in both closed and open set scenarios. The approach learns a mapping from the source to the target domain by jointly solving an assignment problem that labels those target instances that potentially belong to the categories of interest present in the source dataset. A thorough evaluation shows that our approach outperforms the state-of-the-art.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237350&isnumber=8237262

80. Deformable Convolutional Networks

Abstract: Convolutional neural networks (CNNs) are inherently limited to model geometric transformations due to the fixed geometric structures in their building modules. In this work, we introduce two new modules to enhance the transformation modeling capability of CNNs, namely, deformable convolution and deformable RoI pooling. Both are based on the idea of augmenting the spatial sampling locations in the modules with additional offsets and learning the offsets from the target tasks, without additional supervision. The new modules can readily replace their plain counterparts in existing CNNs and can be easily trained end-to-end by standard back-propagation, giving rise to deformable convolutional networks. Extensive experiments validate the performance of our approach. For the first time, we show that learning dense spatial transformation in deep CNNs is effective for sophisticated vision tasks such as object detection and semantic segmentation. The code is released at https://github.com/msracver/Deformable-ConvNets.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237351&isnumber=8237262

81. Ensemble Diffusion for Retrieval

Abstract: As a postprocessing procedure, diffusion process has demonstrated its ability of substantially improving the performance of various visual retrieval systems. Whereas, great efforts are also devoted to similarity (or metric) fusion, seeing that only one individual type of similarity cannot fully reveal the intrinsic relationship between objects. This stimulates a great research interest of considering similarity fusion in the framework of diffusion process (i.e., fusion with diffusion) for robust retrieval. In this paper, we firstly revisit representative methods about fusion with diffusion, and provide new insights which are ignored by previous researchers. Then, observing that existing algorithms are susceptible to noisy similarities, the proposed Regularized Ensemble Diffusion (RED) is bundled with an automatic weight learning paradigm, so that the negative impacts of noisy similarities are suppressed. At last, we integrate several recently-proposed similarities with the proposed framework. The experimental results suggest that we can achieve new state-of-the-art performances on various retrieval tasks, including 3D shape retrieval on ModelNet dataset, and image retrieval on Holidays and Ukbench dataset.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237352&isnumber=8237262

82. FoveaNet: Perspective-Aware Urban Scene Parsing

Abstract: Parsing urban scene images benefits many applications, especially self-driving. Most of the current solutions employ generic image parsing models that treat all scales and locations in the images equally and do not consider the geometry property of car-captured urban scene images. Thus, they suffer from heterogeneous object scales caused by perspective projection of cameras on actual scenes and inevitably encounter parsing failures on distant objects as well as other boundary and recognition errors. In this work, we propose a new FoveaNet model to fully exploit the perspective geometry of scene images and address the common failures of generic parsing models. FoveaNet estimates the perspective geometry of a scene image through a convolutional network which integrates supportive evidence from contextual objects within the image. Based on the perspective geometry information, FoveaNet “undoes” the camera perspective projection - analyzing regions in the space of the actual scene, and thus provides much more reliable parsing results. Furthermore, to effectively address the recognition errors, FoveaNet introduces a new dense CRFs model that takes the perspective geometry as a prior potential. We evaluate FoveaNet on two urban scene parsing datasets, Cityspaces and CamVid, which demonstrates that FoveaNet can outperform all the well-established baselines and provide new state-of-the-art performance.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237353&isnumber=8237262

83. Beyond Planar Symmetry: Modeling Human Perception of Reflection and Rotation Symmetries in the Wild

Abstract: Humans take advantage of real world symmetries for various tasks, yet capturing their superb symmetry perception mechanism with a computational model remains elusive. Motivated by a new study demonstrating the extremely high inter-person accuracy of human perceived symmetries in the wild, we have constructed the first deep-learning neural network for reflection and rotation symmetry detection (Sym-NET), trained onphotos from MS-COCO (Microsoft-Common Object in COntext) dataset with nearly 11K consistent symmetry-labels from more than 400 human observers. We employ novel methods to convert discrete human labels into symmetry heatmaps, capture symmetry densely in an image and quantitatively evaluate Sym-NET against multiple existing computer vision algorithms. On CVPR 2013 symmetry competition testsets and unseen MS-COCO photos, Sym-NET significantly outperforms all other competitors. Beyond mathematically well-defined symmetries on a plane, Sym-NET demonstrates abilities to identify viewpoint-varied 3D symmetries, partially occluded symmetrical objects, and symmetries at a semantic level.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237354&isnumber=8237262

84. Learning to Reason: End-to-End Module Networks for Visual Question Answering

Abstract: Natural language questions are inherently compositional, and many are most easily answered by reasoning about their decomposition into modular sub-problems. For example, to answer “is there an equal number of balls and boxes?” we can look for balls, look for boxes, count them, and compare the results. The recently proposed Neural Module Network (NMN) architecture [3, 2] implements this approach to question answering by parsing questions into linguistic substructures and assembling question-specific deep networks from smaller modules that each solve one subtask. However, existing NMN implementations rely on brittle off-the-shelf parsers, and are restricted to the module configurations proposed by these parsers rather than learning them from data. In this paper, we propose End-to-End Module Networks (N2NMNs), which learn to reason by directly predicting instance-specific network layouts without the aid of a parser. Our model learns to generate network structures (by imitating expert demonstrations) while simultaneously learning network parameters (using the downstream task loss). Experimental results on the new CLEVR dataset targeted at compositional question answering show that N2NMNs achieve an error reduction of nearly 50% relative to state-of-the-art attentional approaches, while discovering interpretable network architectures specialized for each question.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237355&isnumber=8237262

85. Hard-Aware Deeply Cascaded Embedding

Abstract: Riding on the waves of deep neural networks, deep metric learning has achieved promising results in various tasks by using triplet network or Siamese network. Though the basic goal of making images from the same category closer than the ones from different categories is intuitive, it is hard to optimize the objective directly due to the quadratic or cubic sample size. Hard example mining is widely used to solve the problem, which spends the expensive computation on a subset of samples that are considered hard. However, hard is defined relative to a specific model. Then complex models will treat most samples as easy ones and vice versa for simple models, both of which are not good for training. It is difficult to define a model with the just right complexity and choose hard examples adequately as different samples are of diverse hard levels. This motivates us to propose the novel framework named Hard-Aware Deeply Cascaded Embedding(HDC) to ensemble a set of models with different complexities in cascaded manner to mine hard examples at multiple levels. A sample is judged by a series of models with increasing complexities and only updates models that consider the sample as a hard case. The HDC is evaluated on CARS196, CUB-200-2011, Stanford Online Products, VehicleID and DeepFashion datasets, and outperforms state-of-the-art methods by a large margin.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237356&isnumber=8237262

86. Query-Guided Regression Network with Context Policy for Phrase Grounding

Abstract: Given a textual description of an image, phrase grounding localizes objects in the image referred by query phrases in the description. State-of-the-art methods address the problem by ranking a set of proposals based on the relevance to each query, which are limited by the performance of independent proposal generation systems and ignore useful cues from context in the description. In this paper, we adopt a spatial regression method to break the performance limit, and introduce reinforcement learning techniques to further leverage semantic context information. We propose a novel Query-guided Regression network with Context policy (QRC Net) which jointly learns a Proposal Generation Network (PGN), a Query-guided Regression Network (QRN) and a Context Policy Network (CPN). Experiments show QRC Net provides a significant improvement in accuracy on two popular datasets: Flickr30K Entities and Referit Game, with 14.25% and 17.14% increase over the state-of-the-arts respectively.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237357&isnumber=8237262

Abstract: For large-scale visual search, highly compressed yet meaningful representations of images are essential. Structured vector quantizers based on product quantization and its variants are usually employed to achieve such compression while minimizing the loss of accuracy. Yet, unlike binary hashing schemes, these unsupervised methods have not yet benefited from the supervision, end-to-end learning and novel architectures ushered in by the deep learning revolution. We hence propose herein a novel method to make deep convolutional neural networks produce supervised, compact, structured binary codes for visual search. Our method makes use of a novel block-softmax nonlinearity and of batch-based entropy losses that together induce structure in the learned encodings. We show that our method outperforms state-of-the-art compact representations based on deep hashing or structured quantization in single and cross-domain category retrieval, instance retrieval and classification. We make our code and models publicly available online.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237358&isnumber=8237262

88. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era

Abstract: The success of deep learning in vision can be attributed to: (a) models with high capacity; (b) increased computational power; and (c) availability of large-scale labeled data. Since 2012, there have been significant advances in representation capabilities of the models and computational capabilities of GPUs. But the size of the biggest dataset has surprisingly remained constant. What will happen if we increase the dataset size by 10× or 100×? This paper takes a step towards clearing the clouds of mystery surrounding the relationship between ‘enormous data’ and visual deep learning. By exploiting the JFT-300M dataset which has more than 375M noisy labels for 300M images, we investigate how the performance of current vision tasks would change if this data was used for representation learning. Our paper delivers some surprising (and some expected) findings. First, we find that the performance on vision tasks increases logarithmically based on volume of training data size. Second, we show that representation learning (or pre-training) still holds a lot of promise. One can improve performance on many vision tasks by just training a better base model. Finally, as expected, we present new state-of-the-art results for different vision tasks including image classification, object detection, semantic segmentation and human pose estimation. Our sincere hope is that this inspires vision community to not undervalue the data and develop collective efforts in building larger datasets.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237359&isnumber=8237262

89. A Generative Model of People in Clothing

Abstract: We present the first image-based generative model of people in clothing for the full body. We sidestep the commonly used complex graphics rendering pipeline and the need for high-quality 3D scans of dressed people. Instead, we learn generative models from a large image database. The main challenge is to cope with the high variance in human pose, shape and appearance. For this reason, pure image-based approaches have not been considered so far. We show that this challenge can be overcome by splitting the generating process in two parts. First, we learn to generate a semantic segmentation of the body and clothing. Second, we learn a conditional model on the resulting segments that creates realistic images. The full model is differentiable and can be conditioned on pose, shape or color. The result are samples of people in different clothing items and styles. The proposed model can generate entirely new people with realistic clothing. In several experiments we present encouraging results that suggest an entirely data-driven approach to people generation is possible.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237360&isnumber=8237262

90. Escape from Cells: Deep Kd-Networks for the Recognition of 3D Point Cloud Models

Abstract: We present a new deep learning architecture (called Kdnetwork) that is designed for 3D model recognition tasks and works with unstructured point clouds. The new architecture performs multiplicative transformations and shares parameters of these transformations according to the subdivisions of the point clouds imposed onto them by kdtrees. Unlike the currently dominant convolutional architectures that usually require rasterization on uniform twodimensional or three-dimensional grids, Kd-networks do not rely on such grids in any way and therefore avoid poor scaling behavior. In a series of experiments with popular shape recognition benchmarks, Kd-networks demonstrate competitive performance in a number of shape recognition tasks such as shape classification, shape retrieval and shape part segmentation.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237361&isnumber=8237262

91. Improved Image Captioning via Policy Gradient optimization of SPIDEr

Abstract: Current image captioning methods are usually trained via maximum likelihood estimation. However, the log-likelihood score of a caption does not correlate well with human assessments of quality. Standard syntactic evaluation metrics, such as BLEU, METEOR and ROUGE, are also not well correlated. The newer SPICE and CIDEr metrics are better correlated, but have traditionally been hard to optimize for. In this paper, we show how to use a policy gradient (PG) method to directly optimize a linear combination of SPICE and CIDEr (a combination we call SPIDEr): the SPICE score ensures our captions are semantically faithful to the image, while CIDEr score ensures our captions are syntactically fluent. The PG method we propose improves on the prior MIXER approach, by using Monte Carlo rollouts instead of mixing MLE training with PG. We show empirically that our algorithm leads to easier optimization and improved results compared to MIXER. Finally, we show that using our PG method we can optimize any of the metrics, including the proposed SPIDEr metric which results in image captions that are strongly preferred by human raters compared to captions generated by the same model but trained to optimize MLE or the COCO metrics.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237362&isnumber=8237262

92. Rolling Shutter Correction in Manhattan World

Abstract: A vast majority of consumer cameras operate the rolling shutter mechanism, which often produces distorted images due to inter-row delay while capturing an image. Recent methods for monocular rolling shutter compensation utilize blur kernel, straightness of line segments, as well as angle and length preservation. However, they do not incorporate scene geometry explicitly for rolling shutter correction, therefore, information about the 3D scene geometry is often distorted by the correction process. In this paper we propose a novel method which leverages geometric properties of the scene-in particular vanishing directions-to estimate the camera motion during rolling shutter exposure from a single distorted image. The proposed method jointly estimates the orthogonal vanishing directions and the rolling shutter camera motion. We performed extensive experiments on synthetic and real datasets which demonstrate the benefits of our approach both in terms of qualitative and quantitative results (in terms of a geometric structure fitting) as well as with respect to computation time.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237363&isnumber=8237262

93. Local-to-Global Point Cloud Registration Using a Dictionary of Viewpoint Descriptors

Abstract: Local-to global point cloud registration is a challenging task due to the substantial differences between these two types of data, and the different techniques used to acquire them. Global clouds cover large-scale environments and are usually acquired aerially, e.g., 3D modeling of a city using Airborne Laser Scanning (ALS). In contrast, local clouds are often acquired from ground level and at a much smaller range, for example, using Terrestrial Laser Scanning (TLS). The differences are often manifested in point density distribution, occlusions nature, and measurement noise. As a result of these differences, existing point cloud registration approaches, such as keypoint-based registration, tend to fail. We improve upon a different approach, recently proposed, based on converting the global cloud into a viewpoint-based cloud dictionary. We propose a local-toglobal registration method where we replace the dictionary clouds with viewpoint descriptors, consisting of panoramic range-images. We then use an efficient dictionary search in the Discrete Fourier Transform (DFT) domain, using phase correlation, to rapidly find plausible transformations from the local to the global reference frame. We demonstrate our method’s significant advantages over the previous cloud dictionary approach, in terms of computational efficiency and memory requirements. In addition, We show its superior registration performance in comparison to a state-ofthe- art, keypoint-based method (FPFH). For the evaluation, we use a challenging dataset of TLS local clouds and an ALS large-scale global cloud, in an urban environment.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237364&isnumber=8237262

94. 3D-PRNN: Generating Shape Primitives with Recurrent Neural Networks

Abstract: The success of various applications including robotics, digital content creation, and visualization demand a structured and abstract representation of the 3D world from limited sensor data. Inspired by the nature of human perception of 3D shapes as a collection of simple parts, we explore such an abstract shape representation based on primitives. Given a single depth image of an object, we present 3DPRNN, a generative recurrent neural network that synthesizes multiple plausible shapes composed of a set of primitives. Our generative model encodes symmetry characteristics of common man-made objects, preserves long-range structural coherence, and describes objects of varying complexity with a compact representation. We also propose a method based on Gaussian Fields to generate a large scale dataset of primitive-based shape representations to train our network. We evaluate our approach on a wide range of examples and show that it outperforms nearest-neighbor based shape retrieval methods and is on-par with voxelbased generative models while using a significantly reduced parameter space.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237365&isnumber=8237262

95. BodyFusion: Real-Time Capture of Human Motion and Surface Geometry Using a Single Depth Camera

Abstract: We propose BodyFusion, a novel real-time geometry fusion method that can track and reconstruct non-rigid surface motion of a human performance using a single consumer-grade depth camera. To reduce the ambiguities of the non-rigid deformation parameterization on the surface graph nodes, we take advantage of the internal articulated motion prior for human performance and contribute a skeleton-embedded surface fusion (SSF) method. The key feature of our method is that it jointly solves for both the skeleton and graph-node deformations based on information of the attachments between the skeleton and the graph nodes. The attachments are also updated frame by frame based on the fused surface geometry and the computed deformations. Overall, our method enables increasingly denoised, detailed, and complete surface reconstruction as well as the updating of the skeleton and attachments as the temporal depth frames are fused. Experimental results show that our method exhibits substantially improved nonrigid motion fusion performance and tracking robustness compared with previous state-of-the-art fusion methods. We also contribute a dataset for the quantitative evaluation of fusion-based dynamic scene reconstruction algorithms using a single depth camera.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237366&isnumber=8237262

96. Quasiconvex Plane Sweep for Triangulation with Outliers

Abstract: Triangulation is a fundamental task in 3D computer vision. Unsurprisingly, it is a well-investigated problem with many mature algorithms. However, algorithms for robust triangulation, which are necessary to produce correct results in the presence of egregiously incorrect measurements (i.e., outliers), have received much less attention. The default approach to deal with outliers in triangulation is by random sampling. The randomized heuristic is not only suboptimal, it could, in fact, be computationally inefficient on large-scale datasets. In this paper, we propose a novel locally optimal algorithm for robust triangulation. A key feature of our method is to efficiently derive the local update step by plane sweeping a set of quasiconvex functions. Underpinning our method is a new theory behind quasiconvex plane sweep, which has not been examined previously in computational geometry. Relative to the random sampling heuristic, our algorithm not only guarantees deterministic convergence to a local minimum, it typically achieves higher quality solutions in similar runtimes.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237367&isnumber=8237262

97. “Maximizing Rigidity” Revisited: A Convex Programming Approach for Generic 3D Shape Reconstruction from Multiple Perspective Views

Abstract: Rigid structure-from-motion (RSfM) and non-rigid structure-from-motion (NRSfM) have long been treated in the literature as separate (different) problems. Inspired by a previous work which solved directly for 3D scene structure by factoring the relative camera poses out, we revisit the principle of “maximizing rigidity” in structure-from-motion literature, and develop a unified theory which is applicable to both rigid and non-rigid structure reconstruction in a rigidity-agnostic way. We formulate these problems as a convex semi-definite program, imposing constraints that seek to apply the principle of minimizing non-rigidity. Our results demonstrate the efficacy of the approach, with stateof- the-art accuracy on various 3D reconstruction problems.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237368&isnumber=8237262

98. Surface Registration via Foliation

Abstract: This work introduces a novel surface registration method based on foliation. A foliation decomposes the surface into a family of closed loops, such that the decomposition has local tensor product structure. By projecting each loop to a point, the surface is collapsed into a graph. Two homeomorphic surfaces with consistent foliations can be registered by first matching their foliation graphs, then matching the corresponding leaves. This foliation based method is capable of handling surfaces with complicated topologies and large non-isometric deformations, rigorous with solid theoretic foundation, easy to implement, robust to compute. The result mapping is diffeomorphic. Our experimental results show the efficiency and efficacy of the proposed method.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237369&isnumber=8237262

99. Rolling-Shutter-Aware Differential SfM and Image Rectification

Abstract: In this paper, we develop a modified differential Structure from Motion (SfM) algorithm that can estimate relative pose from two consecutive frames despite of Rolling Shutter (RS) artifacts. In particular, we show that under constant velocity assumption, the errors induced by the rolling shutter effect can be easily rectified by a linear scaling operation on each optical flow. We further propose a 9-point algorithm to recover the relative pose of a rolling shutter camera that undergoes constant acceleration motion. We demonstrate that the dense depth maps recovered from the relative pose of the RS camera can be used in a RS-aware warping for image rectification to recover high-quality Global Shutter (GS) images. Experiments on both synthetic and real RS images show that our RS-aware differential SfM algorithm produces more accurate results on relative pose estimation and 3D reconstruction from images distorted by RS effect compared to standard SfM algorithms that assume a GS camera model. We also demonstrate that our RS-aware warping for image rectification method outperforms state-of-the-art commercial software products, i.e. Adobe After Effects and Apple Imovie, at removing RS artifacts.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237370&isnumber=8237262

100. Corner-Based Geometric Calibration of Multi-focus Plenoptic Cameras

Abstract: We propose a method for geometric calibration of multi-focus plenoptic cameras using raw images. Multi-focus plenoptic cameras feature several types of micro-lenses spatially aligned in front of the camera sensor to generate micro-images at different magnifications. This multi-lens arrangement provides computational-photography benefits but complicates calibration. Our methodology achieves the detection of the type of micro-lenses, the retrieval of their spatial arrangement, and the estimation of intrinsic and extrinsic camera parameters therefore fully characterising this specialised camera class. Motivated from classic pinhole camera calibration, our algorithm operates on a checker-board’s corners, retrieved by a custom micro-image corner detector. This approach enables the introduction of a reprojection error that is used in a minimisation framework. Our algorithm compares favourably to the state-of-the-art, as demonstrated by controlled and freehand experiments, making it a first step towards accurate 3D reconstruction and Structure-from-Motion.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237371&isnumber=8237262

101. Focal Track: Depth and Accommodation with Oscillating Lens Deformation

Abstract: The focal track sensor is a monocular and computationally efficient depth sensor that is based on defocus controlled by a liquid membrane lens. It synchronizes small lens oscillations with a photosensor to produce real-time depth maps by means of differential defocus, and it couples these oscillations with bigger lens deformations that adapt the defocus working range to track objects over large axial distances. To create the focal track sensor, we derive a texture-invariant family of equations that relate image derivatives to scene depth when a lens changes its focal length differentially. Based on these equations, we design a feed-forward sequence of computations that: robustly incorporates image derivatives at multiple scales; produces confidence maps along with depth; and can be trained endto- end to mitigate against noise, aberrations, and other non-idealities. Our prototype with 1-inch optics produces depth and confidence maps at 100 frames per second over an axial range of more than 75cm.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237372&isnumber=8237262

102. Reconfiguring the Imaging Pipeline for Computer Vision

Abstract: Advancements in deep learning have ignited an explosion of research on efficient hardware for embedded computer vision. Hardware vision acceleration, however, does not address the cost of capturing and processing the image data that feeds these algorithms. We examine the role of the image signal processing (ISP) pipeline in computer vision to identify opportunities to reduce computation and save energy. The key insight is that imaging pipelines should be be configurable: to switch between a traditional photography mode and a low-power vision mode that produces lower-quality image data suitable only for computer vision. We use eight computer vision algorithms and a reversible pipeline simulation tool to study the imaging system’s impact on vision performance. For both CNN-based and classical vision algorithms, we observe that only two ISP stages, demosaicing and gamma compression, are critical for task performance. We propose a new image sensor design that can compensate for these stages. The sensor design features an adjustable resolution and tunable analog-to-digital converters (ADCs). Our proposed imaging system’s vision mode disables the ISP entirely and configures the sensor to produce subsampled, lower-precision image data. This vision mode can save ~75% of the average energy of a baseline photography mode with only a small impact on vision task accuracy.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237373&isnumber=8237262

103. Catadioptric HyperSpectral Light Field Imaging

Abstract: The complete plenoptic function records radiance of rays from every location, at every angle, for every wavelength and at every time. The signal is multi-dimensional and has long relied on multi-modal sensing such as hybrid light field camera arrays. In this paper, we present a single camera hyperspectral light field imaging solution that we call Snapshot Plenoptic Imager (SPI). SPI uses spectral coded catadioptric mirror arrays for simultaneously acquiring the spatial, angular and spectral dimensions. We further apply a learning-based approach to improve the spectral resolution from very few measurements. Specifically, we demonstrate and then employ a new spectral sparsity prior that allows the hyperspectral profiles to be sparsely represented under a pre-trained dictionary. Comprehensive experiments on synthetic and real data show that our technique is effective, reliable, and accurate. In particular, we are able to produce the first wide FoV multi-spectral light field database.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237374&isnumber=8237262

104. Cross-View Asymmetric Metric Learning for Unsupervised Person Re-Identification

Abstract: While metric learning is important for Person reidentification (RE-ID), a significant problem in visual surveillance for cross-view pedestrian matching, existing metric models for RE-ID are mostly based on supervised learning that requires quantities of labeled samples in all pairs of camera views for training. However, this limits their scalabilities to realistic applications, in which a large amount of data over multiple disjoint camera views is available but not labelled. To overcome the problem, we propose unsupervised asymmetric metric learning for unsupervised RE-ID. Our model aims to learn an asymmetric metric, i.e., specific projection for each view, based on asymmetric clustering on cross-view person images. Our model finds a shared space where view-specific bias is alleviated and thus better matching performance can be achieved. Extensive experiments have been conducted on a baseline and five large-scale RE-ID datasets to demonstrate the effectiveness of the proposed model. Through the comparison, we show that our model works much more suitable for unsupervised RE-ID compared to classical unsupervised metric learning models. We also compare with existing unsupervised REID methods, and our model outperforms them with notable margins. Specifically, we report the results on large-scale unlabelled RE-ID dataset, which is important but unfortunately less concerned in literatures.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237375&isnumber=8237262

105. Real Time Eye Gaze Tracking with 3D Deformable Eye-Face Model

Abstract: 3D model-based gaze estimation methods are widely explored because of their good accuracy and ability to handle free head movement. Traditional methods with complex hardware systems (Eg. infrared lights, 3D sensors, etc.) are restricted to controlled environments, which significantly limit their practical utilities. In this paper, we propose a 3D model-based gaze estimation method with a single web-camera, which enables instant and portable eye gaze tracking. The key idea is to leverage on the proposed 3D eye-face model, from which we can estimate 3D eye gaze from observed 2D facial landmarks. The proposed system includes a 3D deformable eye-face model that is learned offline from multiple training subjects. Given the deformable model, individual 3D eye-face models and personal eye parameters can be recovered through the unified calibration algorithm. Experimental results show that the proposed method outperforms state-of-the-art methods while allowing convenient system setup and free head movement. A real time eye tracking system running at 30 FPS also validates the effectiveness and efficiency of the proposed method.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237376&isnumber=8237262

106. Ensemble Deep Learning for Skeleton-Based Action Recognition Using Temporal Sliding LSTM Networks

Abstract: This paper addresses the problems of feature representation of skeleton joints and the modeling of temporal dynamics to recognize human actions. Traditional methods generally use relative coordinate systems dependent on some joints, and model only the long-term dependency, while excluding short-term and medium term dependencies. Instead of taking raw skeletons as the input, we transform the skeletons into another coordinate system to obtain the robustness to scale, rotation and translation, and then extract salient motion features from them. Considering that Long Shortterm Memory (LSTM) networks with various time-step sizes can model various attributes well, we propose novel ensemble Temporal Sliding LSTM (TS-LSTM) networks for skeleton-based action recognition. The proposed network is composed of multiple parts containing short-term, mediumterm and long-term TS-LSTM networks, respectively. In our network, we utilize an average ensemble among multiple parts as a final feature to capture various temporal dependencies. We evaluate the proposed networks and the additional other architectures to verify the effectiveness of the proposed networks, and also compare them with several other methods on five challenging datasets. The experimental results demonstrate that our network models achieve the state-of-the-art performance through various temporal features. Additionally, we analyze a relation between the recognized actions and the multi-term TS-LSTM features by visualizing the softmax features of multiple parts.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237377&isnumber=8237262

107. How Far are We from Solving the 2D & 3D Face Alignment Problem? (and a Dataset of 230,000 3D Facial Landmarks)

Abstract: This paper investigates how far a very deep neural network is from attaining close to saturating performance on existing 2D and 3D face alignment datasets. To this end, we make the following 5 contributions: (a) we construct, for the first time, a very strong baseline by combining a state-of-the-art architecture for landmark localization with a state-of-the-art residual block, train it on a very large yet synthetically expanded 2D facial landmark dataset and finally evaluate it on all other 2D facial landmark datasets. (b)We create a guided by 2D landmarks network which converts 2D landmark annotations to 3D and unifies all existing datasets, leading to the creation of LS3D-W, the largest and most challenging 3D facial landmark dataset to date (~230,000 images). (c) Following that, we train a neural network for 3D face alignment and evaluate it on the newly introduced LS3D-W. (d) We further look into the effect of all “traditional” factors affecting face alignment performance like large pose, initialization and resolution, and introduce a “new” one, namely the size of the network. (e) We show that both 2D and 3D face alignment networks achieve performance of remarkable accuracy which is probably close to saturating the datasets used. Training and testing code as well as the dataset can be downloaded from https://www.adrianbulat.com/face-alignment/.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237378&isnumber=8237262

108. Large Pose 3D Face Reconstruction from a Single Image via Direct Volumetric CNN Regression

Abstract: 3D face reconstruction is a fundamental Computer Vision problem of extraordinary difficulty. Current systems often assume the availability of multiple facial images (sometimes from the same subject) as input, and must address a number of methodological challenges such as establishing dense correspondences across large facial poses, expressions, and non-uniform illumination. In general these methods require complex and inefficient pipelines for model building and fitting. In this work, we propose to address many of these limitations by training a Convolutional Neural Network (CNN) on an appropriate dataset consisting of 2D images and 3D facial models or scans. Our CNN works with just a single 2D facial image, does not require accurate alignment nor establishes dense correspondence between images, works for arbitrary facial poses and expressions, and can be used to reconstruct the whole 3D facial geometry (including the non-visible parts of the face) bypassing the construction (during training) and fitting (during testing) of a 3D Morphable Model. We achieve this via a simple CNN architecture that performs direct regression of a volumetric representation of the 3D facial geometry from a single 2D image. We also demonstrate how the related task of facial landmark localization can be incorporated into the proposed framework and help improve reconstruction quality, especially for the cases of large poses and facial expressions. Code and models will be made available at http://aaronsplace.co.uk.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237379&isnumber=8237262

109. RankIQA: Learning from Rankings for No-Reference Image Quality Assessment

Abstract: We propose a no-reference image quality assessment (NR-IQA) approach that learns from rankings (RankIQA). To address the problem of limited IQA dataset size, we train a Siamese Network to rank images in terms of image quality by using synthetically generated distortions for which relative image quality is known. These ranked image sets can be automatically generated without laborious human labeling. We then use fine-tuning to transfer the knowledge represented in the trained Siamese Network to a traditional CNN that estimates absolute image quality from single images. We demonstrate how our approach can be made significantly more efficient than traditional Siamese Networks by forward propagating a batch of images through a single network and backpropagating gradients derived from all pairs of images in the batch. Experiments on the TID2013 benchmark show that we improve the state-of-theart by over 5%. Furthermore, on the LIVE benchmark we show that our approach is superior to existing NR-IQA techniques and that we even outperform the state-of-the-art in full-reference IQA (FR-IQA) methods without having to resort to high-quality reference images to infer IQA.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237380&isnumber=8237262

110. Look, Perceive and Segment: Finding the Salient Objects in Images via Two-stream Fixation-Semantic CNNs

Abstract: Recently, CNN-based models have achieved remarkable success in image-based salient object detection (SOD). In these models, a key issue is to find a proper network architecture that best fits for the task of SOD. Toward this end, this paper proposes two-stream fixation-semantic CNNs, whose architecture is inspired by the fact that salient objects in complex images can be unambiguously annotated by selecting the pre-segmented semantic objects that receive the highest fixation density in eye-tracking experiments. In the two-stream CNNs, a fixation stream is pre-trained on eye-tracking data whose architecture well fits for the task of fixation prediction, and a semantic stream is pre-trained on images with semantic tags that has a proper architecture for semantic perception. By fusing these two streams into an inception-segmentation module and jointly fine-tuning them on images with manually annotated salient objects, the proposed networks show impressive performance in segmenting salient objects. Experimental results show that our approach outperforms 10 state-of-the-art models (5 deep, 5 non-deep) on 4 datasets.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237381&isnumber=8237262

111. Delving into Salient Object Subitizing and Detection

Abstract: Subitizing (i.e., instant judgement on the number) and detection of salient objects are human inborn abilities. These two tasks influence each other in the human visual system. In this paper, we delve into the complementarity of these two tasks. We propose a multi-task deep neural network with weight prediction for salient object detection, where the parameters of an adaptive weight layer are dynamically determined by an auxiliary subitizing network. The numerical representation of salient objects is therefore embedded into the spatial representation. The proposed joint network can be trained end-to-end using backpropagation. Experiments show the proposed multi-task network outperforms existing multi-task architectures, and the auxiliary subitizing network provides strong guidance to salient object detection by reducing false positives and producing coherent saliency maps. Moreover, the proposed method is an unconstrained method able to handle images with/without salient objects. Finally, we show state-of-the-art performance on different salient object datasets.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237382&isnumber=8237262

112. Visual Relationship Detection with Internal and External Linguistic Knowledge Distillation

Abstract: Understanding the visual relationship between two objects involves identifying the subject, the object, and a predicate relating them. We leverage the strong correlations between the predicate and the hsubj; obji pair (both semantically and spatially) to predict predicates conditioned on the subjects and the objects. Modeling the three entities jointly more accurately reflects their relationships compared to modeling them independently, but it complicates learning since the semantic space of visual relationships is huge and training data is limited, especially for longtail relationships that have few instances. To overcome this, we use knowledge of linguistic statistics to regularize visual model learning. We obtain linguistic knowledge by mining from both training annotations (internal knowledge) and publicly available text, e.g., Wikipedia (external knowledge), computing the conditional probability distribution of a predicate given a (subj, obj) pair. As we train the visual model, we distill this knowledge into the deep model to achieve better generalization. Our experimental results on the Visual Relationship Detection (VRD) and Visual Genome datasets suggest that with this linguistic knowledge distillation, our model outperforms the stateof- the-art methods significantly, especially when predicting unseen relationships (e.g., recall improved from 8.45% to 19.17% on VRD zero-shot testing set).

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237383&isnumber=8237262

113. Learning Discriminative Data Fitting Functions for Blind Image Deblurring

Abstract: Solving blind image deblurring usually requires defining a data fitting function and image priors. While existing algorithms mainly focus on developing image priors for blur kernel estimation and non-blind deconvolution, only a few methods consider the effect of data fitting functions. In contrast to the state-of-the-art methods that use a single or a fixed data fitting term, we propose a data-driven approach to learn effective data fitting functions from a large set of motion blurred images with the associated ground truth blur kernels. The learned data fitting function facilitates estimating accurate blur kernels for generic scenes and domain-specific problems with corresponding image priors. In addition, we extend the learning approach for data fitting function to latent image restoration and nonuniform deblurring. Extensive experiments on challenging motion blurred images demonstrate the proposed algorithm performs favorably against the state-of-the-art methods.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237384&isnumber=8237262

114. Video Deblurring via Semantic Segmentation and Pixel-Wise Non-linear Kernel

Abstract: Video deblurring is a challenging problem as the blur is complex and usually caused by the combination of camera shakes, object motions, and depth variations. Optical flow can be used for kernel estimation since it predicts motion trajectories. However, the estimates are often inaccurate in complex scenes at object boundaries, which are crucial in kernel estimation. In this paper, we exploit semantic segmentation in each blurry frame to understand the scene contents and use different motion models for image regions to guide optical flow estimation. While existing pixel-wise blur models assume that the blur kernel is the same as optical flow during the exposure time, this assumption does not hold when the motion blur trajectory at a pixel is different from the estimated linear optical flow. We analyze the relationship between motion blur trajectory and optical flow, and present a novel pixel-wise non-linear kernel model to account for motion blur. The proposed blur model is based on the non-linear optical flow, which describes complex motion blur more effectively. Extensive experiments on challenging blurry videos demonstrate the proposed algorithm performs favorably against the state-of-the-art methods.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237385&isnumber=8237262

115. On-demand Learning for Deep Image Restoration

Abstract: While machine learning approaches to image restoration offer great promise, current methods risk training models fixated on performing well only for image corruption of a particular level of difficulty-such as a certain level of noise or blur. First, we examine the weakness of conventional “fixated” models and demonstrate that training general models to handle arbitrary levels of corruption is indeed non-trivial. Then, we propose an on-demand learning algorithm for training image restoration models with deep convolutional neural networks. The main idea is to exploit a feedback mechanism to self-generate training instances where they are needed most, thereby learning models that can generalize across difficulty levels. On four restoration tasks-image inpainting, pixel interpolation, image deblurring, and image denoising-and three diverse datasets, our approach consistently outperforms both the status quo training procedure and curriculum learning alternatives.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237386&isnumber=8237262

116. Multi-channel Weighted Nuclear Norm Minimization for Real Color Image Denoising

Abstract: Most of the existing denoising algorithms are developed for grayscale images. It is not trivial to extend them for color image denoising since the noise statistics in R, G, and B channels can be very different for real noisy images. In this paper, we propose a multi-channel (MC) optimization model for real color image denoising under the weighted nuclear norm minimization (WNNM) framework. We concatenate the RGB patches to make use of the channel redundancy, and introduce a weight matrix to balance the data fidelity of the three channels in consideration of their different noise statistics. The proposed MC-WNNM model does not have an analytical solution. We reformulate it into a linear equality-constrained problem and solve it via alternating direction method of multipliers. Each alternative updating step has a closed-form solution and the convergence can be guaranteed. Experiments on both synthetic and real noisy image datasets demonstrate the superiority of the proposed MC-WNNM over state-of-the-art denoising methods.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237387&isnumber=8237262

117. Coherent Online Video Style Transfer

Abstract: Training a feed-forward network for the fast neural style transfer of images has proven successful, but the naive extension of processing videos frame by frame is prone to producing flickering results. We propose the first end-to-end network for online video style transfer, which generates temporally coherent stylized video sequences in near realtime. Two key ideas include an efficient network by incorporating short-term coherence, and propagating short-term coherence to long-term, which ensures consistency over a longer period of time. Our network can incorporate different image stylization networks and clearly outperforms the per-frame baseline both qualitatively and quantitatively. Moreover, it can achieve visually comparable coherence to optimization-based video style transfer, but is three orders of magnitude faster.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237388&isnumber=8237262

118. SHaPE: A Novel Graph Theoretic Algorithm for Making Consensus-Based Decisions in Person Re-identification Systems

Abstract: Person re-identification is a challenge in video-based surveillance where the goal is to identify the same person in different camera views. In recent years, many algorithms have been proposed that approach this problem by designing suitable feature representations for images of persons or by training appropriate distance metrics that learn to distinguish between images of different persons. Aggregating the results from multiple algorithms for person re-identification is a relatively less-explored area of research. In this paper, we formulate an algorithm that maps the ranking process in a person re-identification algorithm to a problem in graph theory. We then extend this formulation to allow for the use of results from multiple algorithms to make a consensus-based decision for the person re-identification problem. The algorithm is unsupervised and takes into account only the matching scores generated by multiple algorithms for creating a consensus of results. Further, we show how the graph theoretic problem can be solved by a two-step process. First, we obtain a rough estimate of the solution using a greedy algorithm. Then, we extend the construction of the proposed graph so that the problem can be efficiently solved by means of Ant Colony Optimization, a heuristic path-searching algorithm for complex graphs. While we present the algorithm in the context of person reidentification, it can potentially be applied to the general problem of ranking items based on a consensus of multiple sets of scores or metric values.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237389&isnumber=8237262

119. Need for Speed: A Benchmark for Higher Frame Rate Object Tracking

Abstract: In this paper, we propose the first higher frame rate video dataset (called Need for Speed - NfS) and benchmark for visual object tracking. The dataset consists of 100 videos (380K frames) captured with now commonly available higher frame rate (240 FPS) cameras from real world scenarios. All frames are annotated with axis aligned bounding boxes and all sequences are manually labelled with nine visual attributes - such as occlusion, fast motion, background clutter, etc. Our benchmark provides an extensive evaluation of many recent and state-of-the-art trackers on higher frame rate sequences. We ranked each of these trackers according to their tracking accuracy and real-time performance. One of our surprising conclusions is that at higher frame rates, simple trackers such as correlation filters outperform complex methods based on deep networks. This suggests that for practical applications (such as in robotics or embedded vision), one needs to carefully tradeoff bandwidth constraints associated with higher frame rate acquisition, computational costs of real-time analysis, and the required application accuracy. Our dataset and benchmark allows for the first time (to our knowledge) systematic exploration of such issues, and will be made available to allow for further research in this space.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237390&isnumber=8237262

120. Learning Background-Aware Correlation Filters for Visual Tracking

Abstract: Correlation Filters (CFs) have recently demonstrated excellent performance in terms of rapidly tracking objects under challenging photometric and geometric variations. The strength of the approach comes from its ability to efficiently learn - on the fly - how the object is changing over time. A fundamental drawback to CFs, however, is that the background of the target is not modeled over time which can result in suboptimal performance. Recent tracking algorithms have suggested to resolve this drawback by either learning CFs from more discriminative deep features (e.g. DeepSRDCF [9] and CCOT [11]) or learning complex deep trackers (e.g. MDNet [28] and FCNT [33]). While such methods have been shown to work well, they suffer from high complexity: extracting deep features or applying deep tracking frameworks is very computationally expensive. This limits the real-time performance of such methods, even on high-end GPUs. This work proposes a Background-Aware CF based on hand-crafted features (HOG [6]) that can efficiently model how both the foreground and background of the object varies over time. Our approach, like conventional CFs, is extremely computationally efficient- and extensive experiments over multiple tracking benchmarks demonstrate the superior accuracy and real-time performance of our method compared to the state-of-the-art trackers.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237391&isnumber=8237262

121. Robust Object Tracking Based on Temporal and Spatial Deep Networks

Abstract: Recently deep neural networks have been widely employed to deal with the visual tracking problem. In this work, we present a new deep architecture which incorporates the temporal and spatial information to boost the tracking performance. Our deep architecture contains three networks, a Feature Net, a Temporal Net, and a Spatial Net. The Feature Net extracts general feature representations of the target. With these feature representations, the Temporal Net encodes the trajectory of the target and directly learns temporal correspondences to estimate the object state from a global perspective. Based on the learning results of the Temporal Net, the Spatial Net further refines the object tracking state using local spatial object information. Extensive experiments on four of the largest tracking benchmarks, including VOT2014, VOT2016, OTB50, and OTB100, demonstrate competing performance of the proposed tracker over a number of state-of-the-art algorithms.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8237392&isnumber=8237262

122. Real-Time Hand Tracking under Occlusion from an Egocentric RGB-D Sensor

Abstract: We present an approach for real-time, robust and accurate hand pose estimation from moving egocentric RGB-D cameras in cluttered real environments. Existing methods typically fail for hand-object interactions in cluttered scenes imaged from egocentric viewpoints-common for virtual or augmented reality applications. Our approach uses two subsequently applied Convolutional Neural Networks (CNNs) to localize the hand and regress 3D joint locations. Hand localization is achieved by using a CNN to estimate the 2D position of the hand center in the input, even in the presence of clutter and

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/你好赵伟/article/detail/993951
推荐阅读
相关标签
  

闽ICP备14008679号