当前位置:   article > 正文

【Stable Diffusion/NovelAI Diffusion的AMD GPU加速推理探索】_dml gpu

dml gpu

在这里插入图片描述

测试机子配置:
1:AMD RX6600(显存8g)+i5 12600KF 16g内存 (台式机)
2:RTX 3070 laptop(显存8g)+i7 10870H 32g内存 (HP暗夜精灵笔记本)
两台电脑平均性能差不多,当然N卡肯定更好一点

这边我们还是MS大发好,用MS的DirectML推理框架推理,虽然据小道消息反馈DML推理效率远不如Cuda,但是要知道DirectML的兼容性好啊,除了Vulkan之外就只有DML能用了,但是Vulkan没有独立的ML推理模块,目前只有一个ncnn比较亲民,最近看上MNN好像也不错

这边推理主要依赖DirectML provider的onnx
在这里插入图片描述
在这里插入图片描述

推理已经可以了,目前用fp16精度的onnx推理,效果还行,不过后期得用图片无损放大整一下,比如waif2x等

正在移植(抄)最后的text2ids的代码

官方源码:

from transformers import CLIPTokenizer, CLIPTextModel

vocab_file='./novelai_onnx/tokenizer/vocab.json'
merges_file='./novelai_onnx/tokenizer/merges.txt'

prompts='1girl'

tokenizer = CLIPTokenizer.from_pretrained('./novelai_onnx', subfolder="tokenizer")

maxlen = tokenizer.model_max_length
inp = tokenizer(prompts, padding="max_length", max_length=maxlen, truncation=True, return_tensors="pt") 
ids = inp["input_ids"]
print('ids:',ids)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

结果:
在这里插入图片描述

C#端结果:
在这里插入图片描述
在这里插入图片描述
对上了,此外是关于padding值的定义了,这里不做深入解释。

基本跑通,下面就是在ONNX里部署了,在sd中,8g显存只能用fp16精度的,超过就必定爆显存,fp32的onnx模型需要12g显存才能跑!

在这里插入图片描述
目前模型已经大部分移植成功,tag也可以添加权重支持!就等清理代码到c#或c++了

以下是关键代码:
第一步:转换原版Diffuser模型为fp16存储的onnx模型,因为fp32需要12g显存,普通电脑打不开

# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os
import shutil
from pathlib import Path

import torch
from torch.onnx import export

import onnx
from diffusers import OnnxStableDiffusionPipeline, StableDiffusionPipeline
from diffusers.onnx_utils import OnnxRuntimeModel
from packaging import version


is_torch_less_than_1_11 = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11")


def onnx_export(
    model,
    model_args: tuple,
    output_path: Path,
    ordered_input_names,
    output_names,
    dynamic_axes,
    opset,
    use_external_data_format=False,
):
    output_path.parent.mkdir(parents=True, exist_ok=True)
    # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
    # so we check the torch version for backwards compatibility
    if is_torch_less_than_1_11:
        export(
            model,
            model_args,
            f=output_path.as_posix(),
            input_names=ordered_input_names,
            output_names=output_names,
            dynamic_axes=dynamic_axes,
            do_constant_folding=True,
            use_external_data_format=use_external_data_format,
            enable_onnx_checker=True,
            opset_version=opset,
        )
    else:
        export(
            model,
            model_args,
            f=output_path.as_posix(),
            input_names=ordered_input_names,
            output_names=output_names,
            dynamic_axes=dynamic_axes,
            do_constant_folding=True,
            opset_version=opset,
        )


@torch.no_grad()
def convert_models(model_path: str, output_path: str, opset: int, fp16: bool = False):
    dtype = torch.float16 if fp16 else torch.float32
    if fp16 and torch.cuda.is_available():
        device = "cuda"
    elif fp16 and not torch.cuda.is_available():
        raise ValueError("`float16` model export is only supported on GPUs with CUDA")
    else:
        device = "cpu"
    pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=dtype).to(device)
    output_path = Path(output_path)

    # TEXT ENCODER
    num_tokens = pipeline.text_encoder.config.max_position_embeddings
    text_hidden_size = pipeline.text_encoder.config.hidden_size
    text_input = pipeline.tokenizer(
        "A sample prompt",
        padding="max_length",
        max_length=pipeline.tokenizer.model_max_length,
        truncation=True,
        return_tensors="pt",
    )
    onnx_export(
        pipeline.text_encoder,
        # casting to torch.int32 until the CLIP fix is released: https://github.com/huggingface/transformers/pull/18515/files
        model_args=(text_input.input_ids.to(device=device, dtype=torch.int32)),
        output_path=output_path / "text_encoder" / "model.onnx",
        ordered_input_names=["input_ids"],
        output_names=["last_hidden_state", "pooler_output"],
        dynamic_axes={
            "input_ids": {0: "batch", 1: "sequence"},
        },
        opset=opset,
    )
    del pipeline.text_encoder

    # UNET
    unet_in_channels = pipeline.unet.config.in_channels
    unet_sample_size = pipeline.unet.config.sample_size
    unet_path = output_path / "unet" / "model.onnx"
    onnx_export(
        pipeline.unet,
        model_args=(
            torch.randn(2, unet_in_channels, unet_sample_size, unet_sample_size).to(device=device, dtype=dtype),
            torch.randn(2).to(device=device, dtype=dtype),
            torch.randn(2, num_tokens, text_hidden_size).to(device=device, dtype=dtype),
            False,
        ),
        output_path=unet_path,
        ordered_input_names=["sample", "timestep", "encoder_hidden_states", "return_dict"],
        output_names=["out_sample"],  # has to be different from "sample" for correct tracing
        dynamic_axes={
            "sample": {0: "batch", 1: "channels", 2: "height", 3: "width"},
            "timestep": {0: "batch"},
            "encoder_hidden_states": {0: "batch", 1: "sequence"},
        },
        opset=opset,
        use_external_data_format=False,  # UNet is > 2GB, so the weights need to be split
    )
    unet_model_path = str(unet_path.absolute().as_posix())
    unet_dir = os.path.dirname(unet_model_path)
    unet = onnx.load(unet_model_path)
    # clean up existing tensor files
    shutil.rmtree(unet_dir)
    os.mkdir(unet_dir)
    # collate external tensor files into one
    onnx.save_model(
        unet,
        unet_model_path,
        save_as_external_data=False,#
        all_tensors_to_one_file=True,
        # location="weights.pb",
        convert_attribute=False,
    )
    del pipeline.unet

    # VAE ENCODER
    vae_encoder = pipeline.vae
    vae_in_channels = vae_encoder.config.in_channels
    vae_sample_size = vae_encoder.config.sample_size
    # need to get the raw tensor output (sample) from the encoder
    vae_encoder.forward = lambda sample, return_dict: vae_encoder.encode(sample, return_dict)[0].sample()
    onnx_export(
        vae_encoder,
        model_args=(
            torch.randn(1, vae_in_channels, vae_sample_size, vae_sample_size).to(device=device, dtype=dtype),
            False,
        ),
        output_path=output_path / "vae_encoder" / "model.onnx",
        ordered_input_names=["sample", "return_dict"],
        output_names=["latent_sample"],
        dynamic_axes={
            "sample": {0: "batch", 1: "channels", 2: "height", 3: "width"},
        },
        opset=opset,
    )

    # VAE DECODER
    vae_decoder = pipeline.vae
    vae_latent_channels = vae_decoder.config.latent_channels
    vae_out_channels = vae_decoder.config.out_channels
    # forward only through the decoder part
    vae_decoder.forward = vae_encoder.decode
    onnx_export(
        vae_decoder,
        model_args=(
            torch.randn(1, vae_latent_channels, unet_sample_size, unet_sample_size).to(device=device, dtype=dtype),
            False,
        ),
        output_path=output_path / "vae_decoder" / "model.onnx",
        ordered_input_names=["latent_sample", "return_dict"],
        output_names=["sample"],
        dynamic_axes={
            "latent_sample": {0: "batch", 1: "channels", 2: "height", 3: "width"},
        },
        opset=opset,
    )
    del pipeline.vae

    # SAFETY CHECKER
    if pipeline.safety_checker is not None:
        safety_checker = pipeline.safety_checker
        clip_num_channels = safety_checker.config.vision_config.num_channels
        clip_image_size = safety_checker.config.vision_config.image_size
        safety_checker.forward = safety_checker.forward_onnx
        onnx_export(
            pipeline.safety_checker,
            model_args=(
                torch.randn(
                    1,
                    clip_num_channels,
                    clip_image_size,
                    clip_image_size,
                ).to(device=device, dtype=dtype),
                torch.randn(1, vae_sample_size, vae_sample_size, vae_out_channels).to(device=device, dtype=dtype),
            ),
            output_path=output_path / "safety_checker" / "model.onnx",
            ordered_input_names=["clip_input", "images"],
            output_names=["out_images", "has_nsfw_concepts"],
            dynamic_axes={
                "clip_input": {0: "batch", 1: "channels", 2: "height", 3: "width"},
                "images": {0: "batch", 1: "height", 2: "width", 3: "channels"},
            },
            opset=opset,
        )
        del pipeline.safety_checker
        safety_checker = OnnxRuntimeModel.from_pretrained(output_path / "safety_checker")
    else:
        safety_checker = None

    onnx_pipeline = OnnxStableDiffusionPipeline(
        vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / "vae_encoder"),
        vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / "vae_decoder"),
        text_encoder=OnnxRuntimeModel.from_pretrained(output_path / "text_encoder"),
        tokenizer=pipeline.tokenizer,
        unet=OnnxRuntimeModel.from_pretrained(output_path / "unet"),
        scheduler=pipeline.scheduler,
        safety_checker=safety_checker,
        feature_extractor=pipeline.feature_extractor,
    )

    onnx_pipeline.save_pretrained(output_path)
    print("ONNX pipeline saved to", output_path)

    del pipeline
    del onnx_pipeline
    _ = OnnxStableDiffusionPipeline.from_pretrained(output_path, provider="CPUExecutionProvider")
    print("ONNX pipeline is loadable")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--model_path",
        default='CompVis/stable-diffusion-v1-4',
        type=str,
        help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).",
    )

    parser.add_argument(
        "--output_path", 
        default='./onnx2',
        type=str, 
        help="Path to the output model.")

    parser.add_argument(
        "--opset",
        default=14,
        type=int,
        help="The version of the ONNX operator set to use.",
    )
    parser.add_argument("--fp16", action="store_true", default=True, help="Export the models in `float16` mode")

    args = parser.parse_args()

    convert_models(args.model_path, args.output_path, args.opset, args.fp16)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268

以上代码是基于官方的代码修改的,修改了导出精度以及合并为单个onnx,不额外生成权重文件
我们用sd官方的1.4模型为例,最终保存到onnx2目录下:
在这里插入图片描述
在这里插入图片描述
可以看到生成的fp16的onnx只有1.6g大小
在这里插入图片描述
这边我运行了onnx版的diffuser python程序,可以正常生成二刺猿图片

最终代码预计移植到MNN框架下,因为这个支持OpenCL加速(通用GPU加速)还有动态输入,主要是现在发展不错,SDK框架清晰有dll直接可以用(划重点)
MNN暂时不考虑,转换过去好像很多算子不支持,麻了

在这里插入图片描述
目前已经可以在Windows AMD显卡模式跑了,如上图,速度蛮快的,反正比cpu快,无需WSL。但是注意,onnx的DmlExecutionProvider对N卡目前不存在兼容性,切记!但是却对A卡有兼容性,所以如果想用N卡加速的,那么请用onnx的GPU版,对应Provider为CUDAExecutionProvider!待有空测试cuda版onnx,所以说,如果是用py环境的,得装两个环境,如果是用的c#版的,得分别编译dll调用
效果图:512x512
请添加图片描述
新配的python ort-gpu版本,用CUDAExecutionProvider跑,也可以正常出图,效果图:
在这里插入图片描述
速度显然是快很多,笔记本RTX3070,比台式机AMD RX6600开DirectML快一点

下一步测试C#端Windows AMD GPU Onnx
效果:
在这里插入图片描述

https://github.com/superowner/StableDiffusion.Sharp/blob/main/README.md
目前代码还不是很完善,这里仅供抛砖引玉

这个制作这个的目的就是为了后面可以拓展使用,比如其他框架一起用,都用git上很火的webui其实是受制于人
。。。
敬请期待

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/凡人多烦事01/article/detail/104771
推荐阅读
相关标签
  

闽ICP备14008679号