赞
踩
测试机子配置:
1:AMD RX6600(显存8g)+i5 12600KF 16g内存 (台式机)
2:RTX 3070 laptop(显存8g)+i7 10870H 32g内存 (HP暗夜精灵笔记本)
两台电脑平均性能差不多,当然N卡肯定更好一点
这边我们还是MS大发好,用MS的DirectML推理框架推理,虽然据小道消息反馈DML推理效率远不如Cuda,但是要知道DirectML的兼容性好啊,除了Vulkan之外就只有DML能用了,但是Vulkan没有独立的ML推理模块,目前只有一个ncnn比较亲民,最近看上MNN好像也不错
这边推理主要依赖DirectML provider的onnx
推理已经可以了,目前用fp16精度的onnx推理,效果还行,不过后期得用图片无损放大整一下,比如waif2x等
正在移植(抄)最后的text2ids的代码
官方源码:
from transformers import CLIPTokenizer, CLIPTextModel
vocab_file='./novelai_onnx/tokenizer/vocab.json'
merges_file='./novelai_onnx/tokenizer/merges.txt'
prompts='1girl'
tokenizer = CLIPTokenizer.from_pretrained('./novelai_onnx', subfolder="tokenizer")
maxlen = tokenizer.model_max_length
inp = tokenizer(prompts, padding="max_length", max_length=maxlen, truncation=True, return_tensors="pt")
ids = inp["input_ids"]
print('ids:',ids)
结果:
C#端结果:
对上了,此外是关于padding值的定义了,这里不做深入解释。
基本跑通,下面就是在ONNX里部署了,在sd中,8g显存只能用fp16精度的,超过就必定爆显存,fp32的onnx模型需要12g显存才能跑!
目前模型已经大部分移植成功,tag也可以添加权重支持!就等清理代码到c#或c++了
以下是关键代码:
第一步:转换原版Diffuser模型为fp16存储的onnx模型,因为fp32需要12g显存,普通电脑打不开
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import shutil from pathlib import Path import torch from torch.onnx import export import onnx from diffusers import OnnxStableDiffusionPipeline, StableDiffusionPipeline from diffusers.onnx_utils import OnnxRuntimeModel from packaging import version is_torch_less_than_1_11 = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def onnx_export( model, model_args: tuple, output_path: Path, ordered_input_names, output_names, dynamic_axes, opset, use_external_data_format=False, ): output_path.parent.mkdir(parents=True, exist_ok=True) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( model, model_args, f=output_path.as_posix(), input_names=ordered_input_names, output_names=output_names, dynamic_axes=dynamic_axes, do_constant_folding=True, use_external_data_format=use_external_data_format, enable_onnx_checker=True, opset_version=opset, ) else: export( model, model_args, f=output_path.as_posix(), input_names=ordered_input_names, output_names=output_names, dynamic_axes=dynamic_axes, do_constant_folding=True, opset_version=opset, ) @torch.no_grad() def convert_models(model_path: str, output_path: str, opset: int, fp16: bool = False): dtype = torch.float16 if fp16 else torch.float32 if fp16 and torch.cuda.is_available(): device = "cuda" elif fp16 and not torch.cuda.is_available(): raise ValueError("`float16` model export is only supported on GPUs with CUDA") else: device = "cpu" pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=dtype).to(device) output_path = Path(output_path) # TEXT ENCODER num_tokens = pipeline.text_encoder.config.max_position_embeddings text_hidden_size = pipeline.text_encoder.config.hidden_size text_input = pipeline.tokenizer( "A sample prompt", padding="max_length", max_length=pipeline.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) onnx_export( pipeline.text_encoder, # casting to torch.int32 until the CLIP fix is released: https://github.com/huggingface/transformers/pull/18515/files model_args=(text_input.input_ids.to(device=device, dtype=torch.int32)), output_path=output_path / "text_encoder" / "model.onnx", ordered_input_names=["input_ids"], output_names=["last_hidden_state", "pooler_output"], dynamic_axes={ "input_ids": {0: "batch", 1: "sequence"}, }, opset=opset, ) del pipeline.text_encoder # UNET unet_in_channels = pipeline.unet.config.in_channels unet_sample_size = pipeline.unet.config.sample_size unet_path = output_path / "unet" / "model.onnx" onnx_export( pipeline.unet, model_args=( torch.randn(2, unet_in_channels, unet_sample_size, unet_sample_size).to(device=device, dtype=dtype), torch.randn(2).to(device=device, dtype=dtype), torch.randn(2, num_tokens, text_hidden_size).to(device=device, dtype=dtype), False, ), output_path=unet_path, ordered_input_names=["sample", "timestep", "encoder_hidden_states", "return_dict"], output_names=["out_sample"], # has to be different from "sample" for correct tracing dynamic_axes={ "sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, "timestep": {0: "batch"}, "encoder_hidden_states": {0: "batch", 1: "sequence"}, }, opset=opset, use_external_data_format=False, # UNet is > 2GB, so the weights need to be split ) unet_model_path = str(unet_path.absolute().as_posix()) unet_dir = os.path.dirname(unet_model_path) unet = onnx.load(unet_model_path) # clean up existing tensor files shutil.rmtree(unet_dir) os.mkdir(unet_dir) # collate external tensor files into one onnx.save_model( unet, unet_model_path, save_as_external_data=False,# all_tensors_to_one_file=True, # location="weights.pb", convert_attribute=False, ) del pipeline.unet # VAE ENCODER vae_encoder = pipeline.vae vae_in_channels = vae_encoder.config.in_channels vae_sample_size = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder vae_encoder.forward = lambda sample, return_dict: vae_encoder.encode(sample, return_dict)[0].sample() onnx_export( vae_encoder, model_args=( torch.randn(1, vae_in_channels, vae_sample_size, vae_sample_size).to(device=device, dtype=dtype), False, ), output_path=output_path / "vae_encoder" / "model.onnx", ordered_input_names=["sample", "return_dict"], output_names=["latent_sample"], dynamic_axes={ "sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, }, opset=opset, ) # VAE DECODER vae_decoder = pipeline.vae vae_latent_channels = vae_decoder.config.latent_channels vae_out_channels = vae_decoder.config.out_channels # forward only through the decoder part vae_decoder.forward = vae_encoder.decode onnx_export( vae_decoder, model_args=( torch.randn(1, vae_latent_channels, unet_sample_size, unet_sample_size).to(device=device, dtype=dtype), False, ), output_path=output_path / "vae_decoder" / "model.onnx", ordered_input_names=["latent_sample", "return_dict"], output_names=["sample"], dynamic_axes={ "latent_sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, }, opset=opset, ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: safety_checker = pipeline.safety_checker clip_num_channels = safety_checker.config.vision_config.num_channels clip_image_size = safety_checker.config.vision_config.image_size safety_checker.forward = safety_checker.forward_onnx onnx_export( pipeline.safety_checker, model_args=( torch.randn( 1, clip_num_channels, clip_image_size, clip_image_size, ).to(device=device, dtype=dtype), torch.randn(1, vae_sample_size, vae_sample_size, vae_out_channels).to(device=device, dtype=dtype), ), output_path=output_path / "safety_checker" / "model.onnx", ordered_input_names=["clip_input", "images"], output_names=["out_images", "has_nsfw_concepts"], dynamic_axes={ "clip_input": {0: "batch", 1: "channels", 2: "height", 3: "width"}, "images": {0: "batch", 1: "height", 2: "width", 3: "channels"}, }, opset=opset, ) del pipeline.safety_checker safety_checker = OnnxRuntimeModel.from_pretrained(output_path / "safety_checker") else: safety_checker = None onnx_pipeline = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / "vae_encoder"), vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / "vae_decoder"), text_encoder=OnnxRuntimeModel.from_pretrained(output_path / "text_encoder"), tokenizer=pipeline.tokenizer, unet=OnnxRuntimeModel.from_pretrained(output_path / "unet"), scheduler=pipeline.scheduler, safety_checker=safety_checker, feature_extractor=pipeline.feature_extractor, ) onnx_pipeline.save_pretrained(output_path) print("ONNX pipeline saved to", output_path) del pipeline del onnx_pipeline _ = OnnxStableDiffusionPipeline.from_pretrained(output_path, provider="CPUExecutionProvider") print("ONNX pipeline is loadable") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--model_path", default='CompVis/stable-diffusion-v1-4', type=str, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument( "--output_path", default='./onnx2', type=str, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=True, help="Export the models in `float16` mode") args = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fp16)
以上代码是基于官方的代码修改的,修改了导出精度以及合并为单个onnx,不额外生成权重文件
我们用sd官方的1.4模型为例,最终保存到onnx2目录下:
可以看到生成的fp16的onnx只有1.6g大小
这边我运行了onnx版的diffuser python程序,可以正常生成二刺猿图片
最终代码预计移植到MNN框架下,因为这个支持OpenCL加速(通用GPU加速)还有动态输入,主要是现在发展不错,SDK框架清晰有dll直接可以用(划重点)
MNN暂时不考虑,转换过去好像很多算子不支持,麻了
目前已经可以在Windows AMD显卡模式跑了,如上图,速度蛮快的,反正比cpu快,无需WSL。但是注意,onnx的DmlExecutionProvider对N卡目前不存在兼容性,切记!但是却对A卡有兼容性,所以如果想用N卡加速的,那么请用onnx的GPU版,对应Provider为CUDAExecutionProvider!待有空测试cuda版onnx,所以说,如果是用py环境的,得装两个环境,如果是用的c#版的,得分别编译dll调用
效果图:512x512
新配的python ort-gpu版本,用CUDAExecutionProvider跑,也可以正常出图,效果图:
速度显然是快很多,笔记本RTX3070,比台式机AMD RX6600开DirectML快一点
下一步测试C#端Windows AMD GPU Onnx
效果:
https://github.com/superowner/StableDiffusion.Sharp/blob/main/README.md
目前代码还不是很完善,这里仅供抛砖引玉
这个制作这个的目的就是为了后面可以拓展使用,比如其他框架一起用,都用git上很火的webui其实是受制于人
。。。
敬请期待
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。